Экономика Юриспруденция История Военное дело Литература
Гуманитарные Естественные Медицина Точные науки Техника
Раздел: Точные науки
РЕФЕРАТ


 
Морфологический анализ цветных (спектрозональных) изображений

1. Введение

Хорошо известно, что изображения одной и той же сцены, полученные при различных условиях освещения и(или) измененных оптических свойствах объектов могут отличаться радикально. Это обстоятельство порождает значительные трудности в прикладных задачах анализа и интерпретации изображений реальных сцен, в которых решение должно не зависеть от условий регистрации изображений. Речь идет, например, о задачах выделения неизвестного объекта на фоне известной местности, известного объекта на произвольном фоне при неконтролируемых условиях освещения, о задаче совмещения изображенний одной и той же сцены, полученных в различных спектральных диапазонах и т.д.
Методы морфологического анализа, разработанные более десяти лет тому назад, [1-5], для решения перечисленных задач, были в основном ориентированы для применения к черно-белым изображениям и оказались достаточно эффективными, [5-11].
Между тем, по меньшей мере два обстоятельства указывают на целесообразность разработки морфологических методов анализа цветных изображений. Во-первых, в задаче обнаружения и выделения объекта последний, как правило, прежде всего цветом отличается от фона. Во-вторых, описание формы изображения в терминах цвета позволит практически устранить эффект теней и влияние неопределенности в пространственном распределении интенсивности спектрально однородного освещения.

2. Цвет и яркость спектозонального изображения.

Рассмотрим некоторые аспекты теории цвета так называемых многоспектральных (спектрозональных, [13]) изображений, аналогичной классической колориметрии [12]. Будем считать заданными n детекторов излучения со спектральными чувствительностями j =1,2,..., n , где Î (0,¥) - длина волны излучения. Их выходные сигналы, отвечающие потоку излучения со спектральной плотностью e ( )³0, Î (0,¥), далее называемой излучением, образуют вектор , w = . Определим суммарную спектральную чувствительность детекторов , Î (0,¥), и соответствующий суммарный сигнал назовем яркостью излучения e . Вектор назовем цветом излучения e . Если цвет e  и само излучение назовем черным . Поскольку равенства и эквивалентны, равенство имеет смысл и для черного цвета, причем в этом случае - произвольный вектор, яркость оторого равна единице. Излучение e назовем белым и его цвет обозначим если отвечающие ему выходные сигналы всех детекторов одинаковы:
.
Векторы , и , , удобно считать элементами n -мерного линейного пространства . Векторы f e , соответствующие различным излучениям e , содержатся в конусе . Концы векторов содержатся в множестве , где Ï - гиперплоскость .
Далее предполагается, что всякое излучение , где E - выпуклый конус излучений, содержащий вместе с любыми излучениями все их выпуклые комбинации (смеси) Поэтому векторы в образуют выпуклый конус , а векторы .
Если то и их аддитивная смесь . Для нее
. (1)
Отсюда следует
Лемма 1. Яркость f e и цвет j e любой аддитивной смеси e  излучений e 1 (×),...,e m (×) , m=1,2,... определяются яркостями и цветами слагаемых .
Подчеркнем, что равенство , означающее факт совпадения яркости и цвета излучений e  и , как правило, содержит сравнительно небольшую информацию об их относительном спектральном составе. Однако замена e  на в любой аддитивной смеси излучений не изменит ни цвета, ни яркости последней.
Далее предполагается, что вектор w  таков, что в E можно указать базовые излучения , для которых векторы , j =1,..., n , линейно независимы. Поскольку цвет таких излучений непременно отличен от черного, их яркости будем считать единичными , , j =1,..., n . В таком случае излучение характеризуется лишь цветом , j =1,..., n .
Для всякого излучения e  можно записать разложение
, (1*)
в котором - координаты в базисе ,
или, в виде выходных сигналов детекторов излучения, - , где , , - выходной сигнал i- го детектора, отвечающий j- ому излучению e j (×), i , j =1,..., n . Матрица - стохастическая, поскольку ее матричные элементы как яркости базовых излучений неотрицательны и , j =1,..., n. При этом яркость и вектор цвета , , j =1,..., n , (конец которого лежит в Ï) определяются координатами a j и цветами излучений , j =1,..., n , и не зависят непосредственно от спектрального состава излучения e .
В ряде случаев белое излучение естественно определять исходя из базовых излучений, а не из выходных сигналов детекторов, считая белым всякое излучение, которому в (1*) отвечают равные координаты: .
Заметим, что слагаемые в (1*), у которых a j <0, физически интерпретируются как соответствующие излучениям, "помещенным" в левую часть равенства (1*) с коэффициентами -a j >0: . В такой форме равенство (1*) представляет “баланс излучений”.
Определим в скалярное произведение и векторы , биортогонально сопряженные с : , i , j =1,..., n .
Лемма 2. В разложении (1*) , j=1,...,n , . Яркость , где , причем вектор ортогонален гиперплоскости Ï, так как , i,j=1,...,n.
Что касается скалярного проиведения , то его естественно определять так, чтобы выходные сигналы детекторов были координатами f e в некотором ортонормированном базисе . В этом базисе конус . Заметим, что для любых векторов и, тем более, для , .
Пусть Х - поле зрения, например, ограниченная область на плоскости R 2 , или на сетке , спектральная чувствительность j -го детектора излучения, расположенного в точке ; - излучение, попадающее в точку . Изображением назовем векторнозначную функцию
(2**)

Точнее, пусть Х - поле зрения, ( Х , С , ) - измеримое пространство Х с мерой  C - s -алгебра подмножеств X . Цветное (спектрозональное) изображение определим равенством
  , (2)
в котором почти для всех , , - m-измеримые функции на поле зрения X , такие, что
.
Цветные изображения образуют подкласс функций лебеговского класса функций . Класс цветных изображений обозначим L E , n .
Впрочем, для упрощения терминологии далее любой элемент называется цветным изображением, а условие
(2*)

условием физичности изображений f (×).
Если f  - цветное изображение (2), то , как нетрудно проверить, - черно-белое изображение [2], т.е. , . Изображение , назовем черно-белым вариантом цветного изображения f , а цветное изображение , f(x)¹0 , xÎX - цветом изображения f  . В точках множества Â={ xÎX : f ( x )=0} черного цвета ( x ), Â, - ï роизвольные векторы из , удовлетворяющие условию: яркость ( x )=1. Черно-белым вариантом цветного изображения f  будем также называть цветное изображение b (×), имеющее в каждой точке Х ту же яркость, что и f  , b(x)=f(x), xÎX , и белый цвет, b (x)= b (x)/b(x)=b, xÎX.
3. Форма цветного изображения.

Понятие формы изображения призвано охарактеризовать форму изображенных объектов в терминах характерности изображений, инвариантных относительно определенного класса преобразований изображения, моделирующих меняющиеся условия его регистрации. Например, довольно часто может меняться освещение сцены, в частности, при практически неизменном спектральном составе может радикально изменяться распределение интенсивности освещения сцены. Такие изменения освещения в формуле (2**) выражаются преобразованием , в котором множитель k(x) модулирует яркость изображения в каждой точке при неизменном распределении цвета. При этом в каждой точке у вектора f (x) может измениться длина, но направление останется неизменным.
Нередко изменение распределения интенсивности освещения сопровождается значительным изменением и его спектрального состава, но - пространственно однородным, одним и тем же в пределах всей изображаемой сцены. Поскольку между спектром излучения e и цветом j нет взаимно однозначного соответствия, модель сопутствующего преобразования изображения f (x) в терминах преобразования его цвета j(×). Для этого определим отображение A (×): , ставящее в соответствие каждому вектору цвета подмножество поля зрения в точках которого изображение , имеет постоянный цвет .
Пусть при рассматриваемом изменении освещения и, соответственно, ; предлагаемая модель преобразования изображения состоит в том, что цвет преобразованного изображения должен быть также постоянным на каждом множестве A (j), хотя, вообще говоря, - другим, отличным от j . Характекрным в данном случае является тот факт, что равенство влечет . Если - самое детальное изображение сцены, то, вообще говоря, на различных множествах A (j ¢) и A (j) цвет изображения может оказаться одинаковым.
Как правило, следует учитывать непостоянство оптических характеристик сцены и т.д. Во всех случаях форма изображения должна быть инвариантна относительно преобразования из выделенного класса и, более того, должна определять изображение с точностью до произвольного преобразования из этого класса.
Для определения понятия формы цветного изображения f (×) на удобно ввести частичный порядок p , т.е. бинарное отношение, удовлетворяющее условиям: 1) , 2) , , то , ; отношение p должно быть согласованным с определением цветного изображения (с условием физичности), а именно, , если . Отношение p интерпретируется аналогично тому, как это принято в черно-белой морфологии[2], а именно, означает, что изображения f  и g  сравнимы по форме, причем форма g  не сложнее, чем форма f  . Если и , то f  и g  назовем совпадающими по форме (изоморфными), f  ~ g  . Например, если f  и g  - изображения одной и той же сцены, то g  , грубо говоря, характеризует форму изображенных объектов не точнее (подробнее, детальнее), чем f  , если .
В рассматриваемом выше примере преобразования изображений  если между множествами A (j), и (j ¢), существует взаимно-однозначное соответствие, т.е., если существует функция , такая, что (j ¢(j))= A (j), , причем , если . В этом случае равенства и эквивалентны, и изоморфны и одинаково детально характеризуют сцену, хотя и в разных цветах.
Если же не взаимно однозначно, то (j ¢)= U A (j) и . В этом случае равенство влечет (но не эквивалентно) , передает, вообще говоря, не все детали сцены, представленные в .
Пусть, скажем, g  - черно-белый вариант f  , т.е. g(x)=f(x) и g (x)/g(x)=b, xÎX . Если преобразование - следствие изменившихся условий регистрации изображения, то, естественно, . Аналогично, если f  g  изображения одной и той же сцены, но в g  вследствие неисправности выходные сигналы некоторых датчиков равны нулю, то . Пусть F - некоторая полугруппа преобразований , тогда для любого преобразования F , поскольку, если некоторые детали формы объекта не отражены в изображении f , то они, тем более, не будут отражены в g .
Формой изображения f  назовем множество изображений , форма которых не сложнее, чем форма f` , и их пределов в
(черта символизирует замыкание в ). Формой изображения f  в широком смысле назовем минимальное линейное подпространство , содержащее . Если считать, что для любого изображения , то это будет означать, что отношение p непрерывно относительно сходимости в в том смысле, что .
Рассмотрим теперь более подробно понятие формы для некоторых характерных классов изображений и их преобразований.

4. Форма кусочно-постоянного (мозаичного) цветного изображения.

Во многих практически важных задачах форма объекта на изображении может быть охарактеризована специальной структурой излучения, достигающего поле зрения X в виде здесь - индикаторные функции непересекающихся подмножеств А i , i=1,…...,N, положительной меры поля зрения Х , на каждом из которых функции , , j =1,..., n , i =1,..., N , непрерывны. Поскольку согласно лемме 2
  , (3)
то цветное изображение f e , такого объекта характеризует его форму непрерывным распределением яркости и цвета на каждом подмножестве A i , i =1,..., N . Для изображения , где , также характерно напрерывное распределение яркости и цвета на каждом A i , если , - непрерывные функции.
Если, в частности, цвет и яркость постоянны на A i , i =1,..., N , то это верно и для всякого изображения , если не зависит явно от . Для такого изображения примем следующее представление:
, (4)

его черно-белый вариант
(4*)
на каждом A i имеет постоянную яркость , и цвет изображения (4)
(4**)

не меняется на A i и равен , i =1,..., N .
Поскольку для реальных изображений должно быть выполнено условие физичности (2*), , то форму изображения (4), имеющего на различных множествах А i имеет несовпадающие яркости и различные цвета , определим как выпуклый замкнутый в конус:
  . (4***)
v(a)
, очевидно, содержится в n×N мерном линейном подпространстве
  , (4****)

которое назовем формой a(×) в широком смысле.
Форму в широком смысле любого изображения a(×), у которого не обязательно различны яркости и цвета на различных подмножествах A i ,i=1,...,N, определим как линейное подпространство , натянутое не вектор-функции Fa(×),FÎF, где F - класс преобразований , определенных как преобразования векторов a(x)®Fa(x) во всех точках xÎX ; здесь F - любое преобразование . Тот факт, что F означает как преобразование , так и преобразование , не должен вызывать недоразумения.
Изображения из конуса(4***) имеют форму, которая не сложнее, чем форма a(×) (4), поскольку некоторые из них могут иметь одно и то же значение яркости или(и) цвета на различных множествах А i , i=1,…………..,N . Также множества оказываются, по существу, объединенными в одно, что и приводит к упрощению формы изображения, поскольку оно отражает меньше деталей формы изображенного объекта, чем изображение (4). Это замечание касается и L( a (×)), если речь идет о форме в широком смысле.
Лемма 3
. Пусть {А i } - измеримое разбиение X: .
Изображение
(3) имеет на каждом подмножестве A i :
- постоянную яркость и цвет , если и только если выполняется равенство (4);
- постоянный цвет , если и только если в (3) ;
- постоянную яркость f i , i=1,..., N , если и только если в (3) не зависит от , i=1,…...,N.
Доказательство
. На множестве A i яркость и цвет изображения (3) равны соответственно
, , i=1,.…..,N.
Если выполнено равенство (4), то и от не зависят. Наоборот, если и , то и , т.е. выполняется (4).
Если , то цвет не зависит от . Наоборот, пусть не зависит от . В силу линейной независимости координаты ( i) (x) не зависят от , т.е. и, следовательно, где - яркость на A i и . Последнее утверждение очевидно n
Цвет изображения определяется как электродинамическими свойствами поверхности изображенного объекта, так и спектральным составом облучающего электромагнитного излучения в том диапазоне, который используется для регистрации изображения. Речь идет о спектральном составе излучения, покидающего поверхность объекта и содержащего как рассеянное так и собственное излучения объекта. Поскольку спектральный состав падающего излучения, как правило, пространственно однороден, можно считать, что цвет изображения несет информацию о свойствах поверхности объекта, о ее форме, а яркость в значительной степени зависит и от условий “освещения”. Поэтому на практике в задачах морфологического анализа цветных изображений сцен важное значение имеет понятие формы изображения, имеющего постоянный цвет и произвольное распределение яркости в пределах заданных подмножеств A i , i=1,...,N, поля зрения X .
Итак, пусть в согласии с леммой 3
, (5)
где, - индикаторная функция A i , , функция g i  задает распределение яркости
(6)
в пределах A i при постоянном цвете
, i=1,...,N , (7)
причем для изображения (5) цвета j (i) , i=1,.…..,N, считаются попарно различными, а функции g (i) , i=1,.…..,N, - удовлетворяющими условиям i=1,.…..,N.
Нетрудно заметить, что в выражениях (5),(6) и (7) без потери общности можно принять условие нормировки , позволяющее упростить выражения (6) и (7) для распределений яркости и цвета. С учетом нормировки распределение яркости на A i задается функцией а цвет на A i равен
(7*)

Форму изображения (5) определим как класс всех изображений
(8)
,

каждое из которых, как и изображение (5), имеет постоянный цвет в пределах каждого A i , i=1,...,N. Форма таких изображений не сложнее, чем форма f () (5), поскольку в изображении на некоторых различных подмножествах A i , i=1,...,N, могут совпадать значения цвета, которые непременрно различны в изображении f () (5). Совпадение цвета на различных подмножествах A i , i=1,...,N ведет к упрощению формы изображения по сравнению с формой f() (5). Все изображения , имеющие различный цвет на различных A i , i=1,...,N , считаются изоморфными f  и между собой), форма остальных не сложнее, чем форма f  . Если , то, очевидно, .
Если в (8) яркость , то цвет на A i считается произвольным (постоянным), если же в точках некоторого подмножества , то цвет на A i считается равным цвету на , i=1,...,N.
Цвет изображения (8) может не совпадать с цветом (5). Если же по условию задачи все изображения , форма которых не сложнее, чем форма , должны иметь на A i , i=1,...,N , тот же цвет, что и у то следует потребовать, чтобы , в то время, как яркости остаются произвольными (если , то цвет на A i определяется равным цвету f  на A i , i=1,...,N ).
Нетрудно определить форму любого, не обязательно мозаичного, изображения f  в том случае, когда допустимы произвольные изменения яркости при неизменном цвете j( x ) в каждой точке . Множество, содержащее все такие изображения
(9)

назовем формой в широком смысле изображения , у которого f(x)¹ 0, m-почти для всех , [ср. 2]. является линейным подпространством , содержащем любую форму
, (10)

в которой включение определяет допустимые значения яркости. В частности, если означает, что яркость неотрицательна: , то - выпуклый замкнутый конус в , принадлежащий .
Более удобное описание формы изображения может быть получено на основе методов аппроксимации цветных изображений, в которых форма определяется как оператор наилучшего приближения. В следующем параграфе дано представление формы изображения в виде оператора наилучшего приближения.
5. Задачи аппроксимации цветных изображений. Форма как оператор наилучшего приближения.

Рассмотрим вначале задачи приближения кусочно-постоянными (мозаичными) изображениями. Решение этих задач позволит построить форму изображения в том случае, когда считается, что для любого преобразования , действующего на изображение как на вектор в каждой точке и оставляющего элементом , т.е. изображением. Форма в широком смысле определяется как оператор наилучшего приближения изображения изображениями

где - класс преобразований , такой, что . Иначе можно считать, что
(10*)

а - оператор наилучшего приближения элементами множества , форма которых не сложнее, чем форма . Характеристическим для является тот факт, что, если f (x)= f (y), то для любого .

5.1. Приближение цветного изображения изображениями, цвет и яркость которых постоянны на подмножествах разбиения поля зрения X .
Задано разбиение , требуется определить яркость и цвет наилучшего приближения на каждом .
Рассмотрим задачу наилучшего приближения в цветного изображения f (×) (2) изображениями (4), в которых считается заданным разбиение поля зрения X и требуется определить из условия

(11)
Теорема 1 .
Пусть . Тогда решение задачи (11) имеет вид
, i=1,...,N, j=1,...,n, (12)
и искомое изображение
(4) задается равенством
 .
(13)
Оператор является ортогональным проектором на линейное подпространство (4****) изображений (4), яркости и цвета которых не изменяются в пределах каждого A i , i=1,...,N.
Черно-белый вариант
(4*) цветного изображения (4) является наилучшей в аппроксимацией черно-белого варианта цветного изображения f   , если цветное изображение (4) является наилучшей в аппроксимацией цветного изображения f   . Оператор , является ортогональным проектором на линейное подпространство черно-белых изображений, яркость которых постоянна в пределах каждого .
В точках множества
цвет (4**) наилучшей аппроксимации (4) цветного изображения f  (2) является цветом аддитивной смеси составляющих f  излучений, которые попадают на .
Доказательство
. Равенства (12) - условия минимума положительно определенной квадратичной формы (11), П - ортогональный проектор, поскольку в задаче (11) наилучшая аппроксимация - ортогональная проекция f  на . Второе утверждение следует из равенства
, вытекающего из (13). Последнее утверждение следует из равенств
, i=1,...,N вытекающих из (12) и равенства (1), в котором индекс k следует заменить на xÎX . ¦
Замечание 1.
Для любого измеримого разбиения ортогональные проекторы и определяют соответственно форму в широком смысле цветного изображения (4), цвет и яркость которого, постоянные в пределах каждого , различны для различных , ибо , и форму в широком смысле черно-белого изображения, яркость которого постоянна на каждом и различна для разных ,[2].
Если учесть, условие физичности (2*), то формой цветного изображения следует считать проектор на выпуклый замкнутый конус (4***)
Аналогично формой черно-белого изображения следует считать проектор на выпуклый замкнутый конус изображений (4*), таких, что [2]. Дело в том, что оператор определяет форму изображения (4), а именно
- множество собственных функций оператора . Поскольку f(×) - наилучшее приближение изображения изображениями из , для любого изображения из и только для таких - . Поэтому проектор можно отождествить с формой изображения (4).
Аналогично для черно-белого изображения a(×)
, [2]. И проектор можно отождествить с формой изображения (4*), как это сделано в работах [2,3].
Примечания.
Формы в широком смысле не определяются связью задач наилучшего приближения элементами и , которая известна как транзитивность проецирования. Именно, если оператор наилучшего в приближения злементами выпуклого замкнутого (в и в ) конуса , то . Иначе говоря, для определения наилучшего в приближения элементами можно вначале найти ортогональную проекцию изображения на , а затем спроецировать в на . При этом конечномерный проектор для каждого конкретного конуса может быть реализован методом динамического программирования, а для многих задач морфологического анализа изображений достаточным оказывается использование лишь проектора П .
Форма в широком смысле (4***) изображения (4) полностью определяется измеримым разложением , последнее, в свою очередь определяется изображением
,

если векторы попарно различны. Если при этом , то форма в широком смысле может быть определена и как оператор П ортогонального проецирования на , определенный равенством (13).
Посмотрим, каким образом воспользоваться этими фактами при построении формы в широком смысле как оператора ортогонального проецирования на линейное подпространство (10*) для произвольного изображения . Пусть - множество значений и - измеримое разбиение X , порожденное , в котором - подмножество X , в пределах которого изображение имеет постоянные яркость и цвет, определяемые вектором , если .
Однако для найденного разбиения условие , вообще говоря, невыполнимо и, следовательно, теорема 1 не позволяет построить ортогональный проектор П на . Покажем, что П можно получить как предел последовательности конечномерных ортогональных проекторов. Заметим вначале, что любое изображение можно представить в виде предела (в ) должным образом организованной последовательности мозаичных изображений
(*)

где - индикатор множества , принадлежащего измеримому разбиению
В (*) можно, например, использовать так называемую исчерпывающую последовательность разбиений [], удовлетворяющую следующим условиям
- - C - измеримо, ;
- N+1 -oe разбиение является продолжением N- го, т.е. для любого , найдется i=i(j), , такое, что ;
- минимальная s-алгебра, содержащая все , совпадает с C.
Лемма (*). Пусть - исчерпывающая последователь-ность разбиений X и - то множество из , которое содержит . Тогда для любой C-измеримой функции

и m-почти для всех
[ ]. n
Воспользуемся этим результатом для построения формы в широком смысле П произвольного изображения . Пусть - минимальная s-алгебра, относительно которой измеримо , т.е. пусть , где - прообраз борелевского множества , B - s-алгебра борелевских множеств . Заменим в условиях, определяющих исчерпывающую последовательность разбиений, C на и выберем эту, зависящую от , исчерпывающую последовательность ( - измеримых) разбиений в лемме (*).
Теорема (*). Пусть , - исчерпывающая последовательность разбиений X , причем - минимальная s - алгебра, содержащая все и П (N) - ортогональный проектор , определенный равенством ,
Тогда
1) для любого
- измеримого изображения и почти для всех , ,
2) для любого изображения при ), где П - ортогональный проектор на .
Доказательство. Первое утверждение непосредственно следует из леммы (*) и определения . Для доказательства второго утверждения заметим, что, так как A (N+1) - продолжение разбиения A (N) , N=1,2,..., то последовательность проекторов П (N) , N=1,2,..., монотонно неубывает : и потому сходится (поточечно) к некоторому ортогональному проектору П. Так как - множество всех -измеримых изображений и их пределов (в ), а в силу леммы (*) для любого -измеримого изображения
, то для любого изображения и для любого , ибо -измеримо, N =1,2,... n
Вопрос о том, каким образом может быть построена исчерпывающая последовательность разбиений, обсуждается в следующем пункте.
Заданы векторы f 1 ,...,f q , требуется определить разбиение , на множествах которого наилучшее приближение принимает соответственно значенния f 1 ,...,f q.
Рассмотрим задачу приближения цветного изображения f , в которой задано не разбиение поля зрения X , а векторы в , и требуется построить измеримое разбиение поля зрения, такое, что цветное изображение - наилучшая в аппроксимация f  . Так как
, (14*)
то в A i следует отнести лишь те точки , для которых , =1,2,... ,q , или, что то же самое, =1,2,..., q . Те точки, которые согласно этому принципу могут быть отнесены к нескольким множествам, должны быть отнесены к одному из них по произволу. Учитывая это, условимся считать, что запись
  ,
(14)
означает, что множества (14) не пересекаются и .
Чтобы сформулировать этот результат в терминах морфологического анализа, рассмотрим разбиение , в котором
(15)
и звездочка указывает на договоренность, принятую в (14). Определим оператор F , действующий из в по формуле , , i =1,..., q . Очевидно, F всегда можно согласовать с (14) так, чтобы включения и , i=1,...,q, можно было считать эквивалентными.
Теорема 2.
Пусть - заданные векторы R n . Решение задачи

наилучшего в
приближения изображения f изображениями имеет вид , где - индикаторная функция множества . Множество определено равенством (15). Нелинейный оператор , как всякий оператор наилучшего приближения удовлетворяет условию F 2 =F, т.е. является пректором.
Замечание 2.
Если данные задачи доступны лишь в черно-белом варианте, то есть заданы числа , i =1,...,q, которые можно считать упорядоченными согласно условию , то, как показано в [3], искомое разбиение X состоит из множеств
 

где , и имеет мало общего с разбиением (14).
Замечание 3.
Выберем векторы f i , i=1,..,q единичной длины: , i =1,...,q. Тогда
.
(16)
Множества (16) являются конусами в R n , ограниченными гиперплоскостями, проходящими через начало координат. Отсюда следует, что соответствующее приближение изображения f  инвариантно относительно произвольного преобразования последнего, не изменяющего его цвет (например ), в частности, относительно образования теней на f  .
Замечание 4. Для любого заданного набора попарно различных векторов оператор F , приведенный в теореме 2, определяет форму изображения, принимающего значения соответственно на измеримых множествах (любого) разбиения X. Всякое такое изображение является неподвижной (в ) точкой F: , если , все они изоморфны между собой. Если некоторые множества из - пустые, или нулевой меры, соответствующие изображения имеют более простую форму.
Иначе говоря, в данном случае формой изображения является множество всех изображений, принимающих заданные значения на множествах положительной меры любого разбиения X, и их пределов в .
Теоремы 1 и 2 позволяют записать необходимые и достаточные условия наилучшего приближения изображения f (×) изображениями , в котором требуется определить как векторы , так и множества так, чтобы
.

Следствие 1.
Пусть D i , i=1,...,N, - подмножества R n (15), П - ортогональный проектор (13), , где . Тогда необходимые и достаточные условия суть следующие : , где , .
Следующая рекуррентная процедура, полезная для уточнения приближений, получаемых в теоремах 1,2, в некоторых случаях позволяет решать названную задачу. Пусть - исходные векторы в задаче (14*), - соответствующее оптимальное разбиение (14), F (1) - оператор наилучшего приближения и - невязка. Воспользовавшись теоремой 1, определим для найденного разбиения оптимальные векторы . Согласно выражению (13) , и соответствующий оператор наилучшего приближения П (1) (13) обеспечит не менее точное приближение f (×) , чем F (1) : . Выберем теперь в теореме 2 , определим соответствующее оптимальное разбиение и построим оператор наилучшего приближения F (2) . Тогда . На следующем шаге по разбиению строим и оператор П (3) и т.д.
В заключение этого пункта вернемся к вопросу о построении исчерпывающего -измеримого разбиения X, отвечающего заданной функции . Выберем произвольно попарно различные векторы из f (X) и построим по формуле (15) разбиение R n . Для каждого q=1,2,... образуем разбиение E (N(q)) , множества , j=1,...,N(q) , которого образованы всеми попарно различными пересечениями множеств из . Последовательность соответствующих разбиений X , i=1,...,N(q), q=1,2... -измеримы и является продолжением

5.2. Приближение изображениями, цвет которых постоянен на подмножествах разбиения поля зрения X .
Задано разбиение , требуется определить цвет и распределение яркостей наилучшего приближения на каждом A i ,i=1,...,N.

Для практики, как уже было отмечено, большой интерес представляет класс изображений (5), цвет которых не изменяется в пределах некоторых подмножеств поля зрения, и задачи аппроксимации произвольных изображений изображениями такого класса.
Запишем изображение (5) в виде
(17)

где .
Пусть A 1 ,...,A N - заданное разбиение X , - индикаторная функция A i , i=1,...,N. Рассмотрим задачу наилучшего в приближения изображения изображениями (17), не требуя, чтобы
(18)

Речь идет о задаче аппроксимации произвольного изображения изображениями, у которых яркость может быть произвольной функцией из , в то время, как цвет должен сохранять постоянное значение на каждом из заданных подмножеств A 1 ,...,A N поля зрения X , (см. Лемму 3).
Так как

то минимум S (19) по достигается при
, (20)

и равен
(21)

Задача (18) тем самым сведена к задаче
. (22)

В связи с последней рассмотрим самосопряженный неотрицательно определенный оператор
. (23)

Максимум (неотрицательной) квадратичной формы на сфере в R n , как известно, (см.,например, [11]) достигается на собственном векторе y i оператора Ф i , отвечающем максимальному собственному значению >0,
,
и равен , т.е. . Следовательно, максимум в (22) равен и достигается, например, при
Теорема 3.
Пусть A 1 ,...,A N -заданное измеримое разбиение X, причем (A i )>0, i=1,...,N. Решением задачи (18) наилучшего приближения изображения изображениями g (×) (17) является изображение
(24)

Операторы , i=1,...,N, и - нелинейные (зависящие от f (×) ) проекторы: П i проецирует в R n векторы на линейное подпространство , натянутое на собственный вектор оператора Ф i (23), отвечающий наибольшему собственному значению  i ,
; (25)
П
проецирует в изображение на минимальное линейное подпространство , содержащее все изображения
Невязка наилучшего приближения
(19*)
.
Доказательство. Равентство (24) и выражение для П i следует из (17),(20) и решения задачи на собственные значения для оператора Ф i (23). Поскольку Ф i самосопряженный неотрицательно определенный оператор, то задача на собственные значения (23) разрешима, все собственные значения Ф i неотрицательны и среди них  i - наибольшее.
Для доказательства свойств операторов П i , i=1,...,N, и П введем обозначения, указывающие на зависимость от f (×):

(26*)

Эти равенства, показывающие, что результат двукратного действия операторов П i , i=1,...,N, и П (26) не отличается от результатата однократного их действия, позволят считать операторы (26) проекторами.
Пусть f i - cсобственный вектор Ф i , отвечающий максимальному собственному значению  i . Чтобы определить следует решить задачу на собственные значения для оператора :
.
Поскольку rank =1, имеет единственное положительное собственное значение, которое, как нетрудно проверить, равно  i , и ему соответствует единственный собственный вектор f i . Поэтому
.
Отсюда, в свою очередь, следует равенство (26*) для n
Лемма 4. Для любого изображения решение (24) задачи (18) наилучшего приближения единственно и является элементом .
Доказательство. Достаточно доказать, что единственный (с точностью до положительного множителя) собственный вектор f i оператора (23), отвечающий максимальному собственному значению  i , можно выбрать так, чтобы , поскольку в таком случае будут выполнены импликации:
,
составляющие содержание леммы. Действительно, если то согласно (23) , поскольку включение означает, что ; отсюда и из (25) получим, что , i=1,...,N, а поэтому и в (24) .
Убедимся в неотрицательности . В ортонормированном базисе e 1 ,...,e n , в котором , выходной сигнал i- го детектора в точке (см. замечание 1) задача на собственные значения (23*) имеет вид , p=1,...,n,
где , .
Так как матрица симметрическая и неотрицательно определенная ( ) она имеет n неотрицательных собственных значений , которым соответствуют n ортонормированных собственных векторов , а поскольку матричные элементы , то согласно теореме Фробенуса-Перрона максимальное собственное значение - алгебраически простое (некратное), а соответствующий собственный вектор можно выбирать неотрицательным:
. Следовательно, вектор f i определен с точностью до положительного множителя , . n
Замечание 4.
Если , т.е. если аппроксимируемое изображение на множествах того же разбиения имеет постоянный цвет, то в теореме 3 , .
Наоборот, если , то
, т.е. определяется выражением (17), в котором .
Итак, пусть в изображении g (×) (17) все векторы f 1 ,.….., f N попарно не коллинеарны, тюею цвета всех подмножеств A 1 ,...,A N попарно различны. Тогда форма в широком смысле изображения (17) есть множество решений уравнения
, , (27)

где , f i - собственный вектор оператора Ф i : , отвечающий максимальному собственному значению i , i=1,...,N . В данном случае , если и только если выполнено равенство (27).
Оператор П (24), дающий решение задачи наилучшего приближения , естественно отождествить с формой в широком смысле изображения (17).
Заданы векторы цвета j 1 ,..., j q , требуется определить разбиение A 1 ,..., A q , на множествах которого наилучшее приближение имеет соответственно цвета j 1 ,..., j q и оптимальные распределения яркостей
.
Речь идет о следующей задаче наилучшего в приближения изображения
. (28)

Рассмотрим вначале задачу (28) не требуя, чтобы . Так как для любого измеримого
, (29)

и достигается на
, (30)

то, как нетрудно убедиться,
, (31)

где звездочка * означает то же самое, что и в равенстве (14): точки X, в которых выполняется равенство могут быть произвольно отнесены к одному из множеств A i или A j .
Пусть - разбиение , в котором
(32)

а F : R n- > R n оператор, определенный условием
(33)

Тогда решение задачи (28) можно представить в виде
, (34)

где - индикаторная функция множества A i (31), i=1,...,q и F -оператор, действующий в по формуле (34) (см. сноску 4 на стр. 13).
Нетрудно убедиться, что задача на минимум (29) с условием физичности
(35)

имеет решение
(36)

Соответственно решение задачи (28) с условием физичности имеет вид
, (37)

где - индикаторная функция множества
, (38)

В ряде случаев для построения (34) полезно определить оператор F + : R n- > R n , действующий согласно формуле
(39)

где
, так что , i=1,...q. (40)
Подытожим сказанное.
Теорема 4. Решение задачи (28) наилучшего в приближения изображения изображениями на искомых множествах A 1 ,...,A q разбиения X заданные цветами j 1 ,..., j q соответственно, дается равенством (34), искомое разбиение A 1 ,...,A q определено в (31). Требование физичности наилучшего приближения приводит к решению (37) и определяет искомое разбиение формулами (38). Решение (34) инвариантно относительно любого, а (37) - относительно любого, сохраняющего физичность, преобразования, неизменяющего его цвет.
Формой в широком смысле изображения, имеющего заданный набор цветов
j 1 ,..., j q на некоторых множествах положительной меры A 1 ,...,A q разбиение поля зрения можно назвать оператор (34), формой такого изображения является оператор F + (37). Всякое такое изображение g (×) , удовлетворяющее условиям физичности (неотрицательности яркостей), удовлетворяет уравнению F + g (×) = g (×) , те из них, у которых m ( A i )> 0, i=1,...,q, изоморфны, остальные имеют более простую форму. n
В заключение этого раздела вернемся к понятию формы изображения, заданного с точностью до произвольного, удовлетворяющего условиям физичности, преобразования яркости. Речь идет о форме изображения , заданного распределением цвета , при произвольном (физичном) распределении яркости, например, . Для определения формы рассмотрим задачу наилучшего в приближения изображения такими изображениями
, (41)

Теорема 5. Решение задачи (41) дается равенством
, (42)
в котором
, где . Невязка приближения
, (43)

( !) n
Определение. Формой изображения, заданного распределением цвета , назовем выпуклый, замкнутый конус изображений

или - проектор на .
Всякое изображение g (×), распределение цвета которого есть j(×) и только такое изображение содержится в и является неподвижной точкой оператора
:
g (×) = g (×). (#)
Поскольку на самом деле детали сцены, передаваемые распределением цвета j(×), не представлены на изображении f (×) = f (×)j(×) в той области поля зрения, в которой яркость f ( x )= 0, xÎ X, будем считать, что - форма любого изображения f ( x ) = f ( x )j( x ), f ( x )> 0, xÎ X( modm ), все такие изображения изоморфны, а форма всякого изображения g (×), удовлетворяющего уравнению (#), не сложнее, чем форма f (×).
Замечание 5. Пусть j 1 ,..., j N - исходный набор цветов, , A 1 ,...,A N - соответствующее оптимальное разбиение X, найденное в теореие 4 и
, (34*)

- наилучшее приближение f (×). Тогда в равенстве (24)
, (24*)

если A 1 ,...,A N - исходное разбиение X в теореме 3. Наоборот, если A 1 ,...,A N - заданное в теореме 3 разбиение X и f 1 ,..., f N - собственные векторы операторов Ф 1 ,...,Ф N (23) соответственно, отвечающие максимальным собственным значениям, то f 1 ,..., f N и будет выполнено равенство (24), если в (34*) определить j i как цвет f i в (24), i=1,...,N .
Проверка этого замечания не представляет затруднений.
В. Случай, когда допускаются небольшие изменения цвета в пределах каждого A i , i=1,...,N .

Разумеется, условие постоянства цвета на множествах A i , i=1,...,N , на практике может выполняться лишь с определенной точностью. Последнюю можно повысить как путем перехода к более мелкому разбиению , так и допустив некоторые изменения цвета в пределах каждого A i , i=1,...,N , например, выбрав вместо (17) класс изображений
(17*)
в котором в (3).
Поскольку в задаче наилучшего приближения f (×) изображениями этого класса предстоит найти , векторы при любом i= 1 ,...,N , можно считать ортогональными, определив
, (*)
из условия минимума невязки по . После этого для каждого i=1,...,N векторы должны быть определены из условия
(**)
при дополнительном условии ортогональности
. Решение этой задачи дается в следующей лемме
Лемма 5. Пусть ортогональные собственные векторы оператора Ф i (23), упорядоченные по убыванию собственных значений:
.
Тогда решение задачи (**) дается равенствами .

Доказательство. Заметим, что, поскольку Ф i - самосопряженный неотрицательно определенный оператор, его собственные значения неотрицательны, а его собственные векторы всегда можно выбрать так, чтобы они образовали ортогональный базис в R n . Пусть P i - ортогонально проецирует в R n на линейную оболочку собственных векторов и
[ P i Ф i P i ] - сужение оператора P i Ф i P i на . Тогда левая часть (*) равна следу оператора [ P i Ф i P i ]
, где - j -ое собственное значение оператора (см., например, [10]). Пусть . Тогда согласно теореме Пуанкаре, [10], , откуда следует утверждаемое в лемме. ¦
Воспользовавшись выражениями (*) и леммой 5, найдем, что в рассматриваемом случае имеет место утверждение, аналогичное теореме 3.
Теорема 3*
. Наилучшее приближение любого изображения f (×) изображениями (17*) имеет вид
,
Где : ортогональный проектор на линейную оболочку , собственных векторов задачи
.
Невязка наилучшего приближения равна
. n
Рассмотрим теперь задачу наилучшего приближения изображения f  изображениями (17), в которых заданы и фиксированы векторы , и надлежит определить измеримое разбиение и функции , как решение задачи
(30)
При любом разбиении минимум в (30) по достигается при , определяемых равенством (20). В свою очередь, очевидно, что
(31)
где точки , в которых выполняется равенство могут быть произвольно включены в одно из множеств : либо в , либо в . Это соглашение отмечено звездочкой в (31).
Таким образом доказана
Теорема 6.
Пусть заданные векторы R n . Решением задачи (30) является изображение
,
где ортогональный проектор
определен равенством (25), а - индикаторная функция множества (31), i=1,...,N. Невязка наилучшего приближения равна
. n
Замечание 5.
Так как при
,
то условия (31), определяющие разбиение , можно записать в виде
, (32)
показывающем, что множество в (32) инвариантно относительно любого преобразования изображения , не изменяющего его цвет .
Теоремы 3 и 6 позволяют сформулировать необходимые и достаточные условия наилучшего приближения изображения f (×) изображениями (17), при котором должны быть найдены и c i 0 , i=1,...,N, такие, что

.
Теорема 7. Для заданного изображения f (×) определим множества равенствами (32), оператор П - равенством (24), - равенствами (25). Тогда ,
определено равенством
(32), в котором - собственный вектор оператора Ф i (23), отвечающий наибольшему собственному значению, причем в (23) , наконец, будет дано равенством (20), в котором , где - собственный вектор оператора , отвечающий наибольшему собственному значению ; наконец,
. n
Замечание 6. Следующая итерационная процедура полезна при отыскании : Для изображения f (×) зададим и по теореме 5 найдем и , затем по теореме 3, используя найдем и . После этого вновь воспользуемся теоремой 3 и по найдем и и т.д. Построенная таким образом последовательность изображений очевидно обладает тем свойством, что числовая последовательность , k =1,2,.….. монотонно не возрастает и, следовательно, сходится. К сожалению ничего определенного нельзя сказать о сходимости последовательности .
Формы (10) и (9) удобно задавать операторами П f и П * f соответственно.
Теорема 7. Форма в широком смысле изображения определяется ортогональным проектором П * f :
 ,
при этом
и .
Доказательство. Так как для , то получаем первое утверждение. Для доказательства второго утверждения рассмотрим выпуклую задачу на минимум , решение которой определяется условиями (см., например, [11]) . Отсюда следует, что и тем самым доказано и второе утверждение n
Замечание. Так как , где f i (x) - выходной сигнал i -го детектора в точке , причем f i (x)³ 0 ,i=1,..., n , и, следовательно цвет реальных изображений непременно имеет неотрицательные , то для реальных изображений , условия и , эквивалентны. Если же для некоторого , то условие не влечет . Заметим также, что для изображений g (×), удовлетворяющих условию , всегда .
Для спектрозональных изображений характерна ситуация, при которой k детекторов регистрируют рассеянную объектами солнечную радиацию в диапазоне видимого света, а остальные n-k регистрируют собственное тепловое излучение объектов ( в инфракрасном диапазоне). В таком случае любое изображение можно представить разложением
(40)

В котором
. Если ИК составляющей солнечного излучения можно пренебречь по сравнению с собственным излучением объектов, то представляет интерес задача приближения изображениями f (×) , в которых f 1 (×) - любая неотрицательная функция из , j 1 (×) - фиксированное векторное поле цвета, f 2 (×) - термояркость, j 2 (×) - термоцвет в точке . Форма П *f видимой компоненты f (×) (40) определяется как оператор наилучшего приближения в задаче
, в данном случае
, причем П *f действует фактически только на "видимую компоненту" g (×), обращая "невидимую, ИК, компоненту" g (×) в ноль.
Форма ИК компоненты f (×) может быть определена лишь тогда, когда известно множество возможных преобразований j 2 (×) f 2 (×).

Некоторые применения.

Задачи идентификации сцен.

Рассмотрим вначале задачи идентификации сцен по их изображения, неискаженным геометрическими преобразованиями, поворотами, изменениями масштаба и т.д. Ограничимся задачами, в которых предъявляемые для анализа изображения получены при изменяющихся и неконтролируемых условиях освещения и неизвестных и, вообще говоря, различных оптических характеристиках сцены.
1). Задачи идентификации при произвольно меняющейся интенсивности освещения .
Можно ли считать f (×) и g (×) изображениями одной и той же сцены, возможно, отличающимя лишь распределениями яркости, например, наличием теней?
В простейшем случае для идентификации достаточно воспользоваться теоремой 5, а именно, f (×) и g (×) можно считать изображениями одной и той же сцены, если существует распределение цвета , для которого v (j(×)) содержит f (×) и g (×). Если , и , то, очевидно, существует , при котором f ( x v (j(×)), g( x v (j(×)), а именно, , , если , , если , и, наконец, - произвольно, если .
На практике удобнее использовать другой подход, позволяющий одновременно решать задачи совмещения изображений и выделения объектов. Можно ли, например, считать g (×) изображением сцены, представленной изображением f (×)? Ответ следует считать утвердительным, если
.

Здесь j(×) - распределение цвета на изображении f (×), символ ~ 0 означает, что значение d( g (×)) можно объяснить наличием шума, каких-либо других погрешностей, или, наконец, - наличием или, наоборот, отсутствием объектов объясняющим несовпадение g (×) и f (×) с точностью до преобразования распределения яркостей. Такие объекты, изменившие распределение цвета g (×) по сравнению с распределением цвета f (×), представлены в .
2). Идентификация при произвольном изменении распределения интенсивности и пространственно однородном изменении спектрального состава освещения .
Можно ли считать изображением сцены, представленной на изображении f (×), изображение, полученное при изменившихся условиях регистрации, например, перемещением или изменением теней и изменением спектрального состава освещения?
Пусть П - форма в широком смысле изображения f (×), определенная в теореме @, П * - форма f (×). Тогда ответ на поставленный вопрос можно считать утвердительным, если . Если изменение g (×) обусловлено не только изменившимися условиями регистрации, но также появлением и (или) исчезновением некоторых объектов, то изменения, обусловленные этим последним обстоятельством будут представлены на .
3). Задачи совмещения изображений и поиска фрагмента.
Пусть f (×) - заданное изображение, X - подмножество поля зрения, c A (×) - его индикатор, c A (×) f (×) -назовем фрагментом изображения f (×) на подмножестве A, представляющем выделенный фрагмент сцены, изображенной на f (×). Пусть g (×) - изображение той же сцены, полученное при других условиях, в частности, например, сдвинутое, повернутое, т.е. геометрически искаженное по сравнению с f (×). Задача состоит в том, чтобы указать на g (×) фрагмент изображения, представляющий на f (×) фрагмент сцены и совместить его с c A (×) f (×).
Ограничимся случаем, когда упомянутые геометрические искажения можно моделировать группой преобразований R 2 ->R 2 , преобразование изображения назовем сдвигом g (×) на h. Здесь
Q
( h ): R n ->R n , H, - группа операторов. Векторный сдвиг на h¢ Î H даст
.
В задаче выделения и совмещения фрагмента рассмотрим фрагмент сдвинутого на h изображения g (×) в “окне” A :
(100)

причем, поскольку где то в (100) - ограничение на сдвиг “окна” А , которое должно оставаться в пределах поля зрения X.
Если кроме цвета g (×) может отличаться от f (×), скажем, произвольным преобразованием распределения яркости при неизменном распределении цвета и - форма фрагмента f (×), то задача выделения и совмещения фрагмента сводится к следующей задаче на минимум
.(101)

При этом считается, что фрагмент изображения g (×), соответствующий фрагменту c A (×) f (×), будет помещен в “окно”. А путем соответствующего сдвига h=h * , совпадает с c A (×) f (×) с точностью до некоторого преобразования распределения яркости на нем. Это означает, что
.

т.е. в (101) при h=h * достигается минимум.

4). В ряде случаев возникает следующая задача анализа спектрозональных изображений: выделить объекты которые “видны”, скажем, в первом канале и “не видны” в остальных.
Рассмотрим два изображения и . Определим форму в широком смысле как множество всех линейных преобразований : ( A - линейный оператор R 2 ->R 2 , не зависящий от X). Для определения проектора на рассмотрим задачу на минимум
. [*]

Пусть , , тогда задача на минимум [*] эквивалентна следующей: tr A * AS - 2trAB ~ . Ее решение (знаком - обозначено псевдообращение).
=
=

Рис.1.
f
e - вектор выходных сигналов детекторов, отвечающий излучению e(×), j e - его цвет; j 1 ,j 2 ,j 3 , - векторы (цвета) базовых излучений, b - белый цвет, конец вектора b находится на пересечении биссектрис.

Литература.

[1] Пытьев Ю.П. Морфологические понятия в задачах анализа изображений, - Докл. АН СССР, 1975, т. 224, №6, сс. 1283-1286.
[2] Пытьев Ю.П. Морфологический анализ изображений, - Докл. АН СССР, 1983, т. 296, №5, сс. 1061-1064.
[3] Пытьев Ю.П. Задачи морфологического анализа изображений, - Математические методы исследования природных ресурсов земли из космоса, ред. Золотухин В.Г., Наука, Москва, 1984, сс. хххх-ххххх.
[4] Пытьев Ю.П., Чуличков А.И. ЭВМ анализирует форму изображения, - Знание,сер. Математика, Кибернентика, Москва, 1988, 47 стр.
[5] Yu.P.Pyt’ev. Morphological Image Analysis, Patt. Recogn. and Image Analysis, 1993, v.3, #1, pp.19-28.
[6] Антонюк В.А., Пытьев Ю.П. Спецпроцессоры реального времени для морфологического анализа реальных сцен. Обработка изображений и дистанционное исследования, -Новосибирск, 1981, сс. 87-89.
[7] Антонюк В.А., Пытьев Ю.П., Рау Э.И. Автоматизация визуального контроля изделий микроэлектроники,Радиотехника и электроника, 1985, т. ХХХ,№12, сс. 2456-2458.
[8] Ермолаев А.Г., Пытьев Ю.П. Априорные оценки полезного сигнала для морфологических решающих алглритмов, - Автоматизация, 1984, №5, сс. 118-120.
[9] Пытьев Ю.П, Задорожный С.С., Лукьянов А.Е. Об автоматизации сравнительного морфологического анализа электронномикроскопических изображений, - Изв. АН СССР, сер. физическая, 1977, т. 41, №11, сс. хххх-хххх.
[10] A.A. Stepanov, S.Yu. Zheltov, Yu.V. Visilter. Shape analysis using Pyt'ev morphological paradigm and its using in machine vision. Proc. SPIE - Th. Intern. Soc. For Optical Engineering Videometrics III, 1994, v. 2350, pp. 163-167.
[11] Пытьев Ю.П.. Математические методы интерпретации эксперимента, Высшая школа, 351 стр., 1989.
[12] Майзель С.О. Ратхер Е.С. Цветовые расчеты и измерения. М:Л:Госэнергоиздат 1941, (Труды всесоюзного электротехнического института, вып.56).
[13] P. Kronberg. Fernerkundung der Erde Ferdinand Enke. Verlag Stuthgart 1985.

 

Hosted by uCoz