Раздел: Естественные наукиГруппы мышц у животныхПередвижение животного, перемещение частей его тела относительно друг друга, работа внутренних органов, акты дыхания, кровообращения, пищеварения, выделения осуществляются благодаря деятельности различных групп мышц. У высших животных имеются три типа мышц: поперечнополосатые скелетные (произвольные) , поперечно-полосатые сердечные (непроизвольные) , гладкие мышцы внутренних органов, сосудов и кожи (непроизвольные) . Отдельно рассматриваются специализированные сократительные образования - миоэпителиальные клетки, мышцы зрачка и цилиарного тела глаза. Помимо свойств возбудимости и проводимости, мышцы обладают сократимостью, т.е. способностью укорачиваться или изменять степень напряжения при возбуждении. Функция сокращения возможна благодаря наличию в мышечной ткани специальных сократимых структур. УЛЬТРАСТРУКТУРА И БИОХИМИЧЕСКИЙ СОСТАВ МЫШЦ Скелетные мышцы. На поперечном сечении продольноволокнистой мышцы видно, что она состоит из первичных пучков, содержащих 20 - 60 волокон. Каждый пучок отделен соединительно тканой оболочкой - перимизиумом, а каждое волокно - эндомизиумом. В мышце животных насчитывается от нескольких сот до нескольких сот тысяч волокон с диаметром от 20 до 100 мкм и длиной до 12 - 16 см. Отдельное волокно покрыто истинной клеточной оболочкой - сарколеммой. Сразу под ней, примерно через каждые 5 мкм по длине, расположены ядра. Волокна имеют характерную поперечную исчерченность, которая обусловлена чередованием оптически более и менее плотных участков. Волокно образовано множеством (1000 - 2000 и более) плотно упакованных миофибрилл (диаметр 0,5 - 2 мкм) , тянущихся из конца в конец. Между миофибриллами рядами расположены митохондрии, где происходят процессы окислительного фосфорилирования, необходимые для снабжения мышцы энергией. Под световым микроскопом миофибриллы представляют образования, состоящие из правильно чередующихся между собой темных и светлых дисков. Диски А называются анизотропными (обладают двойным лучепреломлением) , диски И - изотропными (почти не обладают двойным лучепреломлением) . Длина А-дисков постоянна, длина И-дисков зависит от стадии сокращения мышечного волокна. В середине каждого изотропного диска находится Х-полоска, в середине анизотропного диска - менее выраженная М-полоска. За счет чередования изотронных и анизотропных сегментов каждая миофибрилла имеет поперечную исчерченность. Упорядоченное же расположение миофибрилл в волокне придает такую же исчерченность волокну в целом. Электронная микроскопия показала, что каждая миофибрилла состоит из параллельно лежащих нитей, или протофибрилл (филаментов) разной толщины и разного химического состава. В одиночной миофибрилле насчитывается 2000 - 2500 протофибрилл. Тонкие протофибриллы имеют попе речник 5 - 8 нм и длину 1 - 1,2 мкм, толстые - соответственно 10 15 нм и 1,5 мкм. Толстые протофибриллы, содержащие молекулы белка миозина, образуют анизотропные диски. На уровне полоски М миозиновые нити связаны тончайшими поперечными соединениями. Тонкие протофибриллы, состоящие в основном из белка актина, образуют изотропные диски. Нити актина прикреплены к полоске Х, пересекая ее в обоих направлениях; они занимают не только область И-диска, но и заходят в промежутки между нитями миозина в области А-диска. В этих участках нити актина и миозина связаны между собой поперечными мостиками, отходящими от миозина. Эти мостики наряду с другими веществами содержат фермент АТФ-азу. Область А-дисков, не содержащая нитей актина, обозначается как зона Н. На поперечном разрезе миофибриллы в области краев А-дисков видно, что каждое миозиновое волокно окружено шестью актиновыми нитями. Структурно-функциональной сократительной единицей миофибриллы является саркомер - повторяющийся участок фибриллы, ограниченный двумя полосками Х. Он состоит из половины изотропного, целого анизотропного и половины другого изотропного дисков. Величина саркомера в мышцах теплокровных составляет около 2 мкм. На электронном микрофото саркомеры проявляются отчетливо. Гладкая эндоплазматическая сеть мышечных волокон, или саркоплазматический ретикулум, образует единую систему трубочек и цистерн. Отдельные трубочки идут в продольном направлении, образуя в зонах Н миофибрилланастомозы, а затем переходят в полости (цистерны) , опоясывающие миофибриллы по кругу. Пара соседних цистерн почти соприкасается с поперечными трубочками (Т-каналами) , идущими от сарколеммы поперек всего мышечного волокна. Комплекс из поперечного Т-канала и двух цистерн, симметрично расположенных по его бокам, называется триадой. У амфибий триады располагаются на уровне Х-полосок, у млекопитающих на границе А-дисков. Элементы саркоплазматического ретикулума участвуют в распространении возбуждения внутрь мышечных волокон, а также в процессах сокращения и расслабления мышц. В 1 г поперечнополосатой мышечной ткани содержится около 100 мг сократительных белков, главным образом миозина и актина, образующих актомиозиновый комплекс. Эти белки нерастворимы в воде, но могут быть экстрагированы растворами солей. К другим сократительным белкам относятся тропомиозин и комплекс тропонина (субъединицы Т, 1, С) , содержащиеся в тонких нитях. В мышце содержатся также миоглобин, гликолитические ферменты и другие растворимые белки, не выполняющие сократительной функции 3. Белковый состав скелетной мышцы Молекулярная Содержание. Белок масса, дальтон, белка, % тыс. Миозин 460 55 60 Актин-р 46 20 - 25 Тропомиозин 70 4 6 Комплекс тропонина (ТпТ, 76 4 6 Тп1, Тпс) Актинин-и 180 1 2 Другие белки (миоглобин, 5 - 10 ферменты и пр.) Гладкие мышцы. Основными структурными элементами гладкой мышечной ткани являются миодиты - мышечные клетки веретенообразной и звездчатой формы длиной 60 - 200 мкм и диаметром 4 - 8 мкм. Наибольшая длина клеток (до 500 мкм) наблюдается в матке во время беременности. Ядро находится в середине клеток. Форма его эллипсоидная, при сокращении клетки оно скручивается штопорообразно, Вокруг ядра сконцентрированы митохондрии и другие трофические компоненты. Миофибриллы в саркоплазме гладкомышечных клеток, по-видимому, отсутствуют. Имеются лишь продольно ориентированные, нерегулярно распределенные миозиновые и актиновые протофибриллы длиной 1 - 2 мкм. Поэтому поперечной исчерченности волокон не наблюдается. В протоплазме клеток находятся в большом количестве пузырьки, содержащие Са++, которые, вероятно, соответствуют саркоплазматическому ретикулуму попе речнополосатых мыщц. В стенках большинства полых органов клетки гладких мышц соединены особыми межклеточными контактами (десмосомами) и образуют плотные пучки, сцементированные гликопротеиновым межклеточным веществом, коллагеновыми и эластичными волокнами. Такие образования, в которых клетки тесно соприкасаются, но цитоплазматическая и мембранная непрерывность между ними отсутствует (пространство между мембранами в области контактов составляет 20 - 30 нм) , называют “функциональным синцитием” . Клетки, образующие синцитий, называют унитарными; возбуждение может беспрепятственно распространяться с одной такой клетки на другую, хотя нервные двигательные окончания вегетативной нервной системы расположены лишь на отдельных из них. В мышечных слоях некоторых крупных сосудов, в мышцах, поднимающих волосы, в ресничной мышце глаза находятся мультиунитарные клетки, снабженные отдельными нервными волок нами и функционирующие независимо одна от другой. МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ В обычных условиях скелетные мышцы возбуждаются импульсами, которые поступают по волокнам двигательных нейронов (мотонейронов) , находящихся в передних рогах спинного мозга или в ядрах черепно-мозговых нервов. В зависимости от количества концевых разветвлений нервное волокно образует синаптические контакты с большим или меньшим числом мышечных волокон. Мотонейрон, его длинный отросток (аксон) и группа мышечных волокон, иннервируемых этим аксоном, составляют двигательную, или нейромоторную, единицу. Чем более тонка, специализированна в работе мышца, тем меньшее количество мышечных волокон входит в нейромоторную единицу. Малые двигательные единицы включают лишь 3 - 5 волокон (например, в мышцах глазного яблока, мелких мышцах лицевой части головы) , большие двигательные единицы - до волонно (аксон) нескольких тысяч волокон (в крупных мышцах туловища и конечностей) . В большинстве мышц двигательные единицы соответствуют первичным мышечным пучкам, каждый из которых содержит от 20 до 60 мышечных волокон. Двигательные единицы различаются не только числом волокон, но и размером нейронов - большие двигательные единицы включают более крупный нейрон с относительно более толстым аксоном. Нейромоторная единица работает как единое целое: импульсы, исходящие от мотонейрона, приводят в действие мышечные волокна. Сокращению мышечных волокон предшествует их злектрическое возбуждение, вызываемое разрядом мотонейронов в области концевых пластинок. Возникающий под влиянием медиатора потенциал концевой пластинки (ПКГ1) , достигнув порогового уровня (около - 30 мВ) , вызывает генерацию потенциала действия, распространяющегося в обе стороны вдоль мышечного волокна. Возбудимость мышечных волокон ниже возбудимости нервных волокон, иннервирующих мышцы, хотя критический уровень деполяризации мембран в обоих случаях одинаков. Это объясняется тем, что потенциал покоя мышечных волокон выше (около - 90 мВ) потенциала покоя нервных волокон (- 70 мВ) . Следовательно, для возникновения потенциала действия в мышечном волокне необходимо деполяризовать мембрану на большую величину, чем в нервном волокне. Длительность потенциала действия в мышечном волокне составляет 5 мс (в нервном соответственно 0,5 - 2 мс) , скорость проведения возбуждения до 5 м/с (в миелинизированных нервных волокнах - до 120 м/с) . Молекулярные механизмы сокращения. Сокращение - это изменение механического состояния миофибриллярного аппарата мышечных волокон под влиянием нервных импульсов. Внешне сокращение проявляется в изменении длины мышцы или степени ее напряжения, или одновременно того и другого. Согласно принятой “теории скольжения” в основе сокращения лежит взаимодействие между актиновыми и миозиновымй нитями миофибрилл вследствие образования поперечных мостиков между ними. В результате происходит “втягивание” тонких актиновых миофиламентов между миозиновыми. Во время скольжения сами актиновые и миозиновые нити не укорачиваются; длина А-дисков также остается прежней, в то время как 3-диски и Н-зоны становятся более узкими. Не меняется длина нитей и при растяжении мышцы, уменьшается лишь степень их взаимного перекрывания. Эти движения основаны на обратимом изменении конформации концевых частей молекул миозина (поперечных выступов с головками) , при котором связи между толстым филаментом миозина и тонким филаментом актина образуются, исчезают и возникают вновь. До раздражения или в фазе расслабления мономер актина недоступен для взаимодействия, так как этому мешает комплекс тропонина и определенная конформация (подтягивание к оси филамента) концевых фрагментов молекулы миозина. В основе молекулярного механизма сокращения лежит процесс так называемого электромеханического сопряжения, причем ключевую роль в процессе взаимодействия миозиновых и актиновых миофиламентов играют ионы Са++, содержащиеся в саркоплазматическом ретикулуме. Это подтверждается тем, что в эксперименте при инъекции кальция внутрь волокон возникает их сокращение. Возникший потенциал распространяется не только по поверхностной мембране мышечного волокна, но и по мембранам, выстилающим попе речные трубочки (Т-систему волокна) . Волна деполяризации захватывает расположенные рядом мембраны цистерн саркоплазматического ретикулума, что сопровождается активацией кальциевых каналов в мембране и выходом ионов Са++ в межфибриллярное пространство. Влияние ионов Са+ + на взаимодействие актина и миозина опосредствовано тропомиозином и тропониновым комплексом которые локализованы в тонких нитях и составляют до 1/3 их массы. При связывании ионов Са++ с тропонином (сферические молекулы которого “сидят” на цепях актина) последний деформируется, толкая тропомиозин в желобки между двумя цепями актина. При этом становится возможным взаимодействие актина с головками миозина, и возникает сила сокращения. Одновременно происходит гидролиз АТФ. Поскольку однократный поворот “головок” укорачивает саркомер лишь на 1/100 его длины (а при изотоническом сокращении саркомер мышцы может укорачиваться на 50 % длины за десятые доли секунды) , ясно, что поперечные мостики должны совершать примерно 50 “гребковых” движений за тот же промежуток времени. Совокупное укорочение последовательно расположенных саркомеров миофибрилл приводит к заметному сокращению мышцы. При одиночном сокращении процесс укорочения вскоре заканчивается. Кальциевый насос, приводимый в действие энергией АТФ, снижает концентрацию Са++ в цитоплазме мышц до 10 М и повышает ее в сарколлазматическом ретикулуме до 10 М, где Са++ связывается белком кальсеквестрином. Снижение уровня Са++ в саркоплазме подавляет АТФ-азную активность актомиозина; при этом поперечные мостики миозина отсоединяются от актина. Происходит расслабление, удлинение мышцы, которое является пассивным процессом. Б случае, если стимулы поступают с высокой частотой {20 Гц и более) , уровень Са++ в саркоплазме в период между стймулами остается высоким, так как кальциевый насос не успевает “загнать” все ионы Са++ в систему саркоплазматического ретикулума. Это является причиной устойчивого тетанического сокращения мышц. Таким образом, сокращение и расслабление мышцы представляет собой серию процессов, развертывающихся в следующей последовательности: стимул -> возникновение потенциала действия - >электромеханическое сопряжение (проведение возбуждения по Т-трубкам, высвобождение Са++ и воздействие его на систему тропонин - тропомиозин - актин) - > образование поперечных мостиков и “скольжение” актиновых нитей вдоль миозиновых - > сокращение миофибрилл - > снижение концентрации ионов Са++ вследствие работы кальциевого насоса - > пространственное изменение белков сократительной системы - > расслабление миофибрилл. После смерти мышцы остаются напряженными, наступает так называемое трупное окоченение. При этом поперечные связи между филаментами актина и миозина сохраняются и не могут разорваться по причине снижения уровня АТФ и невозможности активного транспорта Са++ в саркоплазматический ретикулум. СТРУКТУРА И ФУНКЦИИ НЕЙРОНА Материалом для построения ЦНС и ее проводников является нервная ткань, состоящая из двух компонентов - нервных клеток (нейронов) и нейроглии. Основными функциональными элементами ЦНС являются нейроны: в теле животных их содержится примерно 50 млрд, из которых лишь небольшая часть расположена на периферических участках тела. Нейроны составляют 10 - 15 % общего числа клеточных элементов в нервной системе. Основную же часть ее занимают клетки нейроглии. У высших животных в процессе постнатального онтогенеза дифференцированные нейроны не делятся. Нейроны существенно различаются по форме (пирамидные, круглые, звездчатые, овальные) , размерами (от 5 до 150 мкм) , количеству отростков, однако они имеют и общие свойства. Любая нервная клетка состоит из тела (сомы, перикариона) и отростков разного типа - дендритов (от лат. дендрон - дерево) и аксона (от лат. аксон - ось) . В зависимости от числа отростков различают униполярные (одноотростковые) , биполярные (двухотростковые) и мультиполярные (многоотростковые) нейроны. Для ЦНС позвоночных типичны биполярные и особенно мультиполярные нейроны. Дендритов может быть много, иногда они сильно ветвятся, различной толщины и снабжены выступами - “шипиками” , которые сильно увеличивают их поверхность. Аксон (нейрит) всегда один. Он начинается от сомы аксонным холмиком, покрыт специальной глиальной оболочкой, образует ряд аксональных окончаний - терминалий. Длина аксона может достигать более метра. Аксонный холмик и часть аксона, не покрытая миелиновой оболочкой, составляют начальный сегмент аксона; его диаметр невелик, (1 - 5 мкм) . В ганглиях спинно- и черепномозговых нервов распространены так называемые псевдоуниполярные клетки; их дендрит и аксон отходят от клетки в виде одного отростка, который затем Т-образно делится. Отличительными особенностями нервных клеток являются крупное ядро (до 1/3 площади цитоплазмы) , многочисленные митохондрии, сильно развитый сетчатый аппарат, наличие характерных органоидов - тигроидной субстанции и нейрофибрилл. Тигроидная субстанция имеет вид базофильных глыбок и представляет собой гранулярную цитоплазматическую сеть с множеством рибосом. Функция тигроида связана с синтезом клеточных белков. При длительном раздражении клетки или перерезке аксонов это вещество исчезает. Нейрофибриллы - это нитчатые, четко выраженные структуры, находящиеся в теле, дендритах и аксоне нейрона. Образованы еще более тонкими элементами - нейрофиламентами при их агрегации с нейротрубочками. Выполняют, по-видимому, опорную функцию. В цитоплазме аксона отсутствуют рибосомы, однако имеются митохондрии, эндоплазматический ретикулум и хорошо развитый аппарат нейрофиламентов и нейротрубочек. Установлено, что аксоны представляют собой очень сложные транспортные системы, причем за отдельные виды транспорта (белков, метаболитов, медиаторов) отвечают, по-видимому, разные субклеточные структуры. В некоторых отделах мозга имеются нейроны, которые вырабатывают гранулы секрета мукопротеидной или гликопротеидной природы. Они обладают одновременно физиологическими признаками нейронов и железистых клеток. Эти клетки называются нейросекреторными. Функция нейронов заключается в восприятии сигналов от рецепторов или других нервных клеток, хранении и переработке информации и пере даче нервных импульсов к другим клеткам - нервным, мышечным или секреторным. Соответственно имеет место специализация нейронов. Их подразделяют на 3 группы: чувствительные (сенсорные, афферентные) нейроны, воспринимающие сигналы из внешней или внутренней среды; ассоциативные (промежуточные, вставочные) нейроны, связывающие разные нервные клетки друг с другом; двигательные (эффекторные) нейроны, передающие нисходящие влияния от вышерасположенных отделов ЦНС к нижерасположенным или из ЦНС к рабочим органам. Тела сенсорных нейронов располагаются вне ЦНС: в спинномозговых ганглиях и соответствующих им ганглиях головного мозга. Эти нейроны имеют псевдоуниполярную форму с аксоном и аксоноподобным дендритом. К афферентным нейронам относятся также клетки, аксоны которых составляют восходящие пути спинного и головного мозга. Ассоциативные нейроны - наиболее многочисленная группа нейронов. Они имеют более мелкий размер, звездчатую форму и аксоны с многочисленными разветвлениями; расположены в сером веществе мозга. Осуществляют связь между разными нейронами, например чувствительным и двигательным в пределах одного сегмента мозга или между соседними сегментами; их отростки не выходят за пределы ЦНС. Двигательные нейроны также расположены в ЦНС. Их аксоны участвуют в передаче нисходящих влияний от вышерасположенных участков мозга к нижерасположенным или из ЦНС к рабочим органам (например, мотонейроны в передних рогах спинного мозга) . Имеются эффекторные нейроны и в вегетативной нервной системе. Особенностями этих нейронов являются разветвленная сеть дендритов и один длинный аксон. Воспринимающей частью нейрона служат в основном ветвящиеся дендриты, снабженные рецепторной мембраной. В результате суммации местных процессов возбуждения в наиболее легковозбудимой триегерной зоне аксона возникают нервные импульсы (потенциалы действия) , которые распространяются по аксону к концевым нервным окончаниям. Таким образом, возбуждение проходит по нейрону в одном направлении - от дендритов к соме и аксону. Нейроглия. Основную массу нервной ткани составляют глиальные элементы, выполняющие вспомогательные функции и заполняющие почти все пространство между нейронами. Анатомически среди них различают клетки нейроглии в мозге (олигодендроциты и астроциты) и шванновские клетки в периферической нервной системе. Олигодендроциты и шванновские клетки формируют вокруг аксонов миэлиновые оболочки. Между глиальными клетками и нейронами имеются щели шириной 15 - 20 нм, которые сообщаются друг с другом, образуя интерстициальное пространство, заполненное жидкостью. Через это пространство происходит обмен веществ между нейроном и глиальными клетками, а также снабжение нейронов кислородом и питательными веществами путем диффузии. Глиальные клетки, по-видимому, выполняют лишь опорные и защитные функции в ЦНС, а не являются, как предполагалось, источником их питания или хранителями информации. По свойствам мембраны глиальные клетки отличаются от нейронов: они пассивно реагируют на электрический ток, их мембраны не генерируют распространяющегося импульса. Между клетками нейроглии существуют плотные контакты (участки низкого сопротивления) , которые обеспечивают прямую электрическую связь. Мембранный потенциал глиальных клеток выше, чем у нейронов, и зависит главным образом от концентрации ионов К+ в среде. Когда при активной деятельности нейронов во внеклеточном пространстве увеличивается концентрация К+, часть его поглощается деполяризованными глиальными элементами. Эта буферная функция глии обеспечивает относительно постоянную вне клеточную концентрацию К+. Клетки глии - астроциты - расположены между телами нейронов и стенкой капилляров, их отростки контактируют со стенкой последних. Эти периваскулярные отростки являются элементами гематоэнцефалического барьера. Клетки микроглии выполняют фагоцитарную функцию, число их резко возрастает при повреждении ткани мозга. |