Раздел: Точные науки Геометрия Лобачевского Лобачевский по существу берет за отправной пункт все то, что Евклид доказал без помощи 5-го постулата. Все эти предположения являются общими как для геометрии Евклида, так и для геометрии Лобачевского. Таким образом, все предложения абсолютной геометрии сохраняют свою силу и в геометрии Лобачевского. Абсолютная геометрия есть общая часть и общий фундамент евклидовой геометрии и геометрии Лобачевского. В первом случае мы получим геометрию Евклида, во втором случае – Геометрию Лобачевского. Отсюда ясно, что все сходное в геометриях Евклида и Лобачевского имеет свои основания в абсолютной Геометрии, а все то, что различно в них, коренится в различии аксиом параллельности. Укажем ряд важнейших планиметрических теорем, относящихся к абсолютной геометрии.
Исходным пунктом геометрии Лобачевского является принятие всех предложений геометрии Евклида, не зависящих от 5-го постулата (т.е. абсолютной геометрии, включая аксиомы Паша, Архимеда, Дедекинда), и присоединение к ним взамен отброшенного 5-го постулата следующая аксиома, противоположный аксиоме Плейфера, а значит, и 5-му постулату. Через точку, лежащую вне прямой плоскости, определяемой ими, можно провести не менее 2-х прямых, не пересекающих данной прямой. Эта аксиома утверждает существование, по крайней мере 2-х таких прямых.Отсюда следует, что таких прямых существует бесконечное множество. Очевидно, что все прямые, проходящие через точку М внутри вертикальных углов a и b, образованных прямыми b и c также не пересекают а , а таких прямых бесконечное множество. Плоскость (или пространство), в которой предполагается выполнение аксиомы Лобачевского, называется плоскостью (или пространством) Лобачевского. Перейдём непосредственно к параллельным Лобачевского. Две граничные прямые СС’ и DD’ называются параллельными прямой ВВ’ в точке А, причём прямая С’С называется параллельной В’В в направлении В’В, а прямая D’D называется параллельной прямой ВВ’ в направление ВВ’. Острый угол a , образуемый параллельными с перпендикуляром АР, называется углом параллельности в точке А относительно прямой BB’. Этот угол, есть функция длины р перпендикуляра АР и обозначается так: a=П (р). АР называются отрезком параллельности в точке А относительно прямой BB’. Все прямые пучка не пересекающие BB’ и лежащие внутри заштрихованных вертикальных углов, называются расходящимися с BB’ или сверх параллельными к BB’; угол, образуемый такой прямой с перпендикуляром АР с обеих от него сторон, больше угла параллельности a . Наконец , все остальные прямые пучка, образующие с АР с какой-либо стороны острый угол, меньше угла параллельности a , называются пересекающими прямую BB’ или сходящимися с BB’ . Необходимо обратить внимание , что геометрия Лобачевского при указание, то прямая СС’ параллельно прямой BB’, является совершенно обязательным также указывать, во-первых, в каком направление CC’ параллельно BB’, во-вторых, в какой точке , ибо у нас пока нет уверенности в том , что если мы на прямой CC’ возьмём какую-нибудь точку М , отличную от А , то и по отношению к пучку прямых с центра в точке М прямая СС’ будет граничной прямой. Определение. Прямая С’C называется параллельной прямой в направление B’B в точке А, если , во-первых, прямая С’C не пересекает прямой BB’, во-вторых , C’C является граничной в пучке прямых с центром в точке А, т. е. всякий луч АЕ, проходящий внутри угла CAD, где D-любая точка прямой BB’, пересекает луч DB. Условимся в целях краткости и удобства обозначать параллельность прямой АА’ к BB’в направление B’B символом AA’ ê ê B’B, где порядок букв указывает направление параллельности. На чертеже направление параллельности указывается стрелками. Т еорема1. Если прямая ВВ’ê êАА' в точке М, то ВВ'ê êАА' в любой своей точке N. Теорема 2 . Если ВВ'ê êАА', то и обратно: АА'ê êВВ'. Теорема 3. Если АА'ê êСС' и ВВ'ê êСС', то АА'ê êВВ'. Теорема 4 . Если прямая CC’ лежит между двумя прямыми АА’ и BB’, параллельными в некотором направление, не пересекая их, то CC’параллельна обеим этим прямым в том же направлении. Теорема 5. Если две прямые при пересечении с третьей образуют равные соответственные углы, или внутренние односторонние углы, в сумме составляющие 2d, то эти прямые расходятся. Задача 902.(Сборник задач - Атанасян, ч.2) Пусть (U1V1) ê ê(U2V2). Доказать, что если прямая (UV) лежит между (U1V1) и (U2V2) и не пересекает одну из них, то она параллельна данным. Действительно, отрезок U1U2, соединяющий любые точки U1 и U2 параллельных прямых U2V2 и U1V1 , пересечет UV в некоторой точке U, ибо UV по условию лежит между U2V2 и U1V1 (теорема 1.18). В силу параллельности U2V2 и U1V1 любой луч U2E , проходящий внутри угла V2U2U1, пересечёт U1V1, а значит, и UV. Следовательно, U2V2 ê ê UV. Пользуясь теоремами 2 и 3 , легко убедиться, что U1V1 ê êUV. Интересно отметить, что в геометрии Лобачевского прямая может пересечь две параллельные, не пересекая третьей. Действительно, например, любая прямая EF, расходящаяся с АА’, пересекает СС’и BB’, не пересекая АА’. |