Морфологический анализ цветных (спектрозональных) изображений
1. Введение
Хорошо известно, что изображения одной и той же сцены, полученные при различных условиях освещения и(или) измененных оптических свойствах объектов могут отличаться радикально. Это обстоятельство порождает значительные трудности в прикладных задачах анализа и интерпретации изображений реальных сцен, в которых решение должно не зависеть от условий регистрации изображений. Речь идет, например, о задачах выделения неизвестного объекта на фоне известной местности, известного объекта на произвольном фоне при неконтролируемых условиях освещения, о задаче совмещения изображенний одной и той же сцены, полученных в различных спектральных диапазонах и т.д.
Методы морфологического анализа, разработанные более десяти лет тому назад, [1-5], для решения перечисленных задач, были в основном ориентированы для применения к черно-белым изображениям и оказались достаточно эффективными, [5-11].
Между тем, по меньшей мере два обстоятельства указывают на целесообразность разработки морфологических методов анализа цветных изображений. Во-первых, в задаче обнаружения и выделения объекта последний, как правило, прежде всего цветом отличается от фона. Во-вторых, описание формы изображения в терминах цвета позволит практически устранить эффект теней и влияние неопределенности в пространственном распределении интенсивности спектрально однородного освещения.
2. Цвет и яркость спектозонального изображения.
Рассмотрим некоторые аспекты теории цвета так называемых многоспектральных (спектрозональных, [13]) изображений, аналогичной классической колориметрии [12]. Будем считать заданными
n
детекторов излучения со спектральными чувствительностями
j
=1,2,...,
n
, где
Î
(0,¥) - длина волны излучения. Их выходные сигналы, отвечающие потоку излучения со спектральной плотностью
e
(
)³0,
Î
(0,¥), далее называемой излучением, образуют вектор
,
w
=
. Определим суммарную спектральную чувствительность детекторов
,
Î
(0,¥), и соответствующий суммарный сигнал
назовем
яркостью излучения
e
.
Вектор
назовем цветом излучения
e
. Если
цвет
e
и само излучение назовем
черным
. Поскольку равенства
и
эквивалентны, равенство
имеет смысл и для черного цвета, причем в этом случае
- произвольный вектор, яркость оторого равна единице. Излучение
e
назовем белым и его цвет обозначим
если отвечающие ему выходные сигналы всех детекторов одинаковы:
.
Векторы
, и
,
, удобно считать элементами
n
-мерного линейного пространства
. Векторы
f
e
, соответствующие различным излучениям
e
, содержатся в конусе
. Концы векторов
содержатся в множестве
, где Ï - гиперплоскость
.
Далее предполагается, что всякое излучение
, где E - выпуклый конус излучений, содержащий вместе с любыми излучениями
все их выпуклые комбинации (смеси)
Поэтому векторы
в
образуют выпуклый конус
, а векторы
.
Если
то и их аддитивная смесь
. Для нее
. (1)
Отсюда следует
Лемма 1.
Яркость f
e
и цвет j
e
любой аддитивной смеси e
излучений e
1
(×),...,e
m
(×)
,
m=1,2,... определяются яркостями и цветами слагаемых
.
Подчеркнем, что равенство
, означающее факт совпадения яркости и цвета излучений
e
и
, как правило, содержит сравнительно небольшую информацию об их относительном спектральном составе. Однако замена
e
на
в любой аддитивной смеси излучений не изменит ни цвета, ни яркости последней.
Далее предполагается, что вектор
w
таков, что в E можно указать базовые излучения
, для которых векторы
,
j
=1,...,
n
, линейно независимы. Поскольку цвет таких излучений непременно отличен от черного,
их яркости будем считать единичными
,
,
j
=1,...,
n
.
В таком случае излучение
характеризуется лишь цветом
,
j
=1,...,
n
.
Для всякого излучения
e
можно записать разложение
,
(1*)
в котором
- координаты
в базисе
,
или, в виде выходных сигналов детекторов излучения, -
, где
,
, - выходной сигнал
i-
го детектора, отвечающий
j-
ому излучению e
j
(×),
i
,
j
=1,...,
n
. Матрица
- стохастическая, поскольку ее матричные элементы как яркости базовых излучений
неотрицательны и
,
j
=1,...,
n.
При этом яркость
и вектор цвета
,
,
j
=1,...,
n
, (конец которого лежит в Ï) определяются координатами a
j
и цветами излучений
,
j
=1,...,
n
, и не зависят непосредственно от спектрального состава излучения
e
.
В ряде случаев белое излучение естественно определять исходя из базовых излучений, а не из выходных сигналов детекторов, считая белым всякое излучение, которому в (1*) отвечают равные координаты:
.
Заметим, что слагаемые в (1*), у которых a
j
<0, физически интерпретируются как соответствующие излучениям, "помещенным" в левую часть равенства (1*) с коэффициентами -a
j
>0:
. В такой форме равенство (1*) представляет “баланс излучений”.
Определим в
скалярное произведение
и векторы
, биортогонально сопряженные с
:
,
i
,
j
=1,...,
n
.
Лемма 2. В
разложении
(1*)
,
j=1,...,n
,
.
Яркость
, где
, причем вектор
ортогонален гиперплоскости Ï, так как
, i,j=1,...,n.
Что касается скалярного проиведения
, то его естественно определять так, чтобы выходные сигналы детекторов
были координатами
f
e
в некотором ортонормированном базисе
. В этом базисе конус
. Заметим, что для любых векторов
и, тем более, для
,
.
Пусть
Х
- поле зрения, например, ограниченная область на плоскости R
2
, или на сетке
,
спектральная чувствительность
j
-го детектора излучения, расположенного в точке
;
- излучение, попадающее в точку
. Изображением назовем векторнозначную функцию
(2**)
Точнее, пусть
Х
- поле зрения, (
Х
,
С
, ) - измеримое пространство
Х
с мерой
C - s
-алгебра подмножеств
X
.
Цветное (спектрозональное) изображение
определим равенством
, (2)
в котором почти для всех
,
,
-
m-измеримые функции на поле зрения
X
, такие, что
.
Цветные изображения образуют подкласс функций
лебеговского класса
функций
. Класс цветных изображений обозначим L
E
,
n
.
Впрочем, для упрощения терминологии далее любой элемент
называется цветным изображением, а условие
(2*)
условием физичности изображений
f
(×).
Если
f
-
цветное изображение (2), то
, как нетрудно проверить, - черно-белое изображение [2], т.е.
,
. Изображение
, назовем
черно-белым вариантом цветного изображения
f
,
а цветное изображение
,
f(x)¹0
,
xÎX
- цветом изображения
f
. В точках множества Â={
xÎX
:
f
(
x
)=0} черного цвета
(
x
),
xÎ
Â, - ï
роизвольные векторы из
, удовлетворяющие условию: яркость
(
x
)=1. Черно-белым вариантом цветного изображения
f
будем также называть цветное изображение
b
(×), имеющее в каждой точке
Х
ту же яркость, что и
f
,
b(x)=f(x), xÎX
, и белый цвет, b
(x)=
b
(x)/b(x)=b, xÎX.
3. Форма цветного изображения.
Понятие формы изображения призвано охарактеризовать форму изображенных объектов в терминах характерности изображений, инвариантных относительно определенного класса преобразований изображения, моделирующих меняющиеся условия его регистрации. Например, довольно часто может меняться освещение сцены, в частности, при практически неизменном спектральном составе может радикально изменяться распределение интенсивности освещения сцены. Такие изменения освещения в формуле (2**) выражаются преобразованием
, в котором множитель
k(x)
модулирует яркость изображения
в каждой точке
при неизменном распределении цвета. При этом в каждой точке
у вектора
f
(x)
может измениться длина, но направление останется неизменным.
Нередко изменение распределения интенсивности освещения сопровождается значительным изменением и его спектрального состава, но - пространственно однородным, одним и тем же в пределах всей изображаемой сцены. Поскольку между спектром излучения
e
и цветом j
нет взаимно однозначного соответствия, модель сопутствующего преобразования изображения
f
(x)
в терминах преобразования его цвета j(×). Для этого определим отображение
A
(×):
, ставящее в соответствие каждому вектору цвета
подмножество поля зрения
в точках которого изображение
, имеет постоянный цвет
.
Пусть при рассматриваемом изменении освещения
и, соответственно,
; предлагаемая модель преобразования изображения состоит в том, что цвет
преобразованного изображения должен быть также постоянным на каждом множестве
A
(j), хотя, вообще говоря, - другим, отличным от j
.
Характекрным в данном случае является тот факт, что равенство
влечет
. Если
- самое детальное изображение сцены, то, вообще говоря, на различных множествах
A
(j
¢) и
A
(j) цвет изображения
может оказаться одинаковым.
Как правило, следует учитывать непостоянство оптических характеристик сцены и т.д. Во всех случаях форма изображения должна быть инвариантна относительно преобразования из выделенного класса и, более того, должна определять изображение с точностью до произвольного преобразования из этого класса.
Для определения понятия формы цветного изображения
f
(×)
на
удобно ввести частичный порядок p , т.е. бинарное отношение, удовлетворяющее условиям: 1)
, 2)
,
, то
,
; отношение p должно быть согласованным с определением цветного изображения (с условием физичности), а именно,
, если
. Отношение p интерпретируется аналогично тому, как это принято в черно-белой морфологии[2], а именно,
означает, что изображения
f
и
g
сравнимы по форме, причем форма
g
не сложнее, чем форма
f
. Если
и
, то
f
и
g
назовем
совпадающими по форме
(изоморфными),
f
~
g
. Например, если
f
и
g
- изображения одной и той же сцены, то
g
, грубо говоря, характеризует форму изображенных объектов не точнее (подробнее, детальнее), чем
f
, если
.
В рассматриваемом выше примере преобразования изображений
если между множествами
A
(j),
и
A¢
(j
¢),
существует взаимно-однозначное соответствие, т.е., если существует функция
, такая, что
A¢
(j
¢(j))=
A
(j),
, причем
, если
. В этом случае равенства
и
эквивалентны,
и
изоморфны и одинаково детально характеризуют сцену, хотя и в разных цветах.
Если же
не взаимно однозначно, то
A¢
(j
¢)=
U
A
(j) и
. В этом случае равенство
влечет
(но не эквивалентно)
,
передает, вообще говоря, не все детали сцены, представленные в
.
Пусть, скажем,
g
- черно-белый вариант
f
, т.е.
g(x)=f(x)
и
g
(x)/g(x)=b, xÎX
. Если преобразование
- следствие изменившихся условий регистрации изображения, то, естественно,
. Аналогично, если
f
g
изображения одной и той же сцены, но в
g
вследствие неисправности выходные сигналы некоторых датчиков равны нулю, то
. Пусть
F
- некоторая полугруппа преобразований
, тогда для любого преобразования
FÎ
F
, поскольку, если некоторые детали формы объекта не отражены в изображении
f
,
то они, тем более, не будут отражены в
g
.
Формой
изображения
f
назовем множество изображений
, форма которых не сложнее, чем форма
f`
, и их пределов в
(черта символизирует замыкание в
). Формой изображения
f
в широком смысле назовем минимальное линейное подпространство
, содержащее
.
Если считать, что
для любого изображения
,
то это будет означать, что отношение p непрерывно относительно сходимости в
в том смысле, что
.
Рассмотрим теперь более подробно понятие формы для некоторых характерных классов изображений и их преобразований.
4. Форма кусочно-постоянного (мозаичного) цветного изображения.
Во многих практически важных задачах форма объекта на изображении может быть охарактеризована специальной структурой излучения, достигающего поле зрения
X
в виде
здесь
- индикаторные функции непересекающихся подмножеств
А
i
, i=1,…...,N,
положительной меры поля зрения
Х
, на каждом из которых функции
,
,
j
=1,...,
n
,
i
=1,...,
N
, непрерывны. Поскольку согласно лемме 2
, (3)
то цветное изображение
f
e
,
такого объекта характеризует
его
форму непрерывным распределением яркости и цвета на каждом подмножестве
A
i
,
i
=1,...,
N
. Для изображения
,
где
, также характерно напрерывное распределение яркости и цвета на каждом
A
i
, если
, - непрерывные функции.
Если, в частности, цвет и яркость
постоянны на
A
i
,
i
=1,...,
N
, то это верно и для всякого изображения
, если
не зависит явно от
. Для такого изображения примем следующее представление:
, (4)
его черно-белый вариант
(4*)
на каждом
A
i
имеет постоянную яркость
, и цвет изображения (4)
(4**)
не меняется на
A
i
и равен
,
i
=1,...,
N
.
Поскольку для реальных изображений должно быть выполнено условие физичности (2*),
, то
форму изображения
(4),
имеющего на различных множествах А
i
имеет несовпадающие яркости
и различные цвета
, определим как выпуклый замкнутый в
конус:
. (4***)
v(a)
, очевидно, содержится в
n×N
мерном линейном подпространстве
, (4****)
которое назовем формой
a(×)
в широком смысле.
Форму в широком смысле любого изображения
a(×),
у которого не обязательно различны яркости и цвета на различных подмножествах
A
i
,i=1,...,N,
определим как линейное подпространство
, натянутое не вектор-функции
Fa(×),FÎF,
где
F
- класс преобразований
, определенных как преобразования векторов
a(x)®Fa(x)
во всех точках
xÎX
; здесь
F
- любое преобразование
. Тот факт, что
F
означает как преобразование
, так и преобразование
, не должен вызывать недоразумения.
Изображения из конуса(4***) имеют форму, которая не сложнее, чем форма
a(×)
(4), поскольку некоторые из них могут иметь одно и то же значение яркости или(и) цвета на различных множествах
А
i
, i=1,…………..,N
. Также множества оказываются, по существу, объединенными в одно, что и приводит к упрощению формы изображения, поскольку оно отражает меньше деталей формы изображенного объекта, чем изображение (4). Это замечание касается и L(
a
(×)), если речь идет о форме в широком смысле.
Лемма 3
. Пусть {А
i
} - измеримое разбиение X:
.
Изображение
(3)
имеет на каждом подмножестве
A
i
:
-
постоянную яркость
и цвет
,
если и только если выполняется равенство
(4);
-
постоянный цвет
,
если и только если в
(3)
;
-
постоянную яркость
f
i
, i=1,...,
N
,
если и только если в
(3)
не
зависит от
,
i=1,…...,N.
Доказательство
. На множестве
A
i
яркость и цвет изображения (3) равны соответственно
,
,
i=1,.…..,N.
Если выполнено равенство (4), то
и
от
не зависят. Наоборот, если
и
, то и
, т.е. выполняется (4).
Если
, то цвет
не зависит от
. Наоборот, пусть
не зависит от
. В силу линейной независимости
координаты
(
i)
(x)
не зависят от
, т.е.
и, следовательно,
где
- яркость на
A
i
и
. Последнее утверждение очевидно n
Цвет изображения определяется как электродинамическими свойствами поверхности изображенного объекта, так и спектральным составом облучающего электромагнитного излучения в том диапазоне, который используется для регистрации изображения. Речь идет о спектральном составе излучения, покидающего поверхность объекта и содержащего как рассеянное так и собственное излучения объекта. Поскольку спектральный состав падающего излучения, как правило, пространственно однороден, можно считать, что цвет изображения несет информацию о свойствах поверхности объекта, о ее форме, а яркость в значительной степени зависит и от условий “освещения”. Поэтому на практике в задачах морфологического анализа цветных изображений сцен важное значение имеет понятие
формы изображения, имеющего постоянный цвет и произвольное распределение яркости в пределах заданных подмножеств
A
i
, i=1,...,N,
поля зрения
X
.
Итак, пусть в согласии с леммой 3
, (5)
где,
- индикаторная функция
A
i
,
,
функция
g
i
задает распределение яркости
(6)
в пределах
A
i
при постоянном цвете
, i=1,...,N
, (7)
причем для изображения (5)
цвета j
(i)
, i=1,.…..,N, считаются попарно различными, а функции g
(i)
, i=1,.…..,N, - удовлетворяющими условиям
i=1,.…..,N.
Нетрудно заметить, что в выражениях (5),(6) и (7) без потери общности можно принять условие нормировки
, позволяющее упростить выражения (6) и (7) для распределений яркости и цвета. С учетом нормировки распределение яркости на
A
i
задается функцией
а цвет на
A
i
равен
(7*)
Форму изображения (5) определим как класс всех изображений
(8)
,
каждое из которых, как и изображение (5), имеет постоянный цвет в пределах каждого
A
i
, i=1,...,N.
Форма таких изображений не сложнее, чем форма
f
() (5), поскольку в изображении
на некоторых различных подмножествах
A
i
, i=1,...,N,
могут совпадать значения цвета, которые непременрно различны в изображении
f
() (5). Совпадение цвета
на различных подмножествах
A
i
, i=1,...,N
ведет к упрощению формы изображения
по сравнению с формой
f()
(5). Все изображения
, имеющие различный цвет на различных
A
i
, i=1,...,N
,
считаются изоморфными
f
и между собой), форма остальных не сложнее, чем форма
f
. Если
, то, очевидно,
.
Если в (8) яркость
, то цвет
на
A
i
считается произвольным (постоянным), если же
в точках некоторого подмножества
, то цвет
на
A
i
считается равным цвету
на
, i=1,...,N.
Цвет изображения (8) может не совпадать с цветом (5). Если же по условию задачи все изображения
, форма которых не сложнее, чем форма
, должны иметь на
A
i
, i=1,...,N
, тот же цвет, что и у
то следует потребовать, чтобы
, в то время, как яркости
остаются произвольными (если
, то цвет
на
A
i
определяется равным цвету
f
на
A
i
, i=1,...,N
).
Нетрудно определить форму любого, не обязательно мозаичного, изображения
f
в том случае, когда допустимы произвольные изменения яркости
при неизменном цвете j(
x
) в каждой точке
. Множество, содержащее все такие изображения
(9)
назовем формой в широком смысле изображения
, у которого
f(x)¹
0, m-почти для всех
, [ср. 2].
является линейным подпространством
, содержащем любую форму
, (10)
в которой включение
определяет допустимые значения яркости. В частности, если
означает, что яркость неотрицательна:
, то
- выпуклый замкнутый конус в
, принадлежащий
.
Более удобное описание формы изображения может быть получено на основе методов аппроксимации цветных изображений, в которых форма определяется как оператор наилучшего приближения. В следующем параграфе дано представление формы изображения в виде оператора наилучшего приближения.
5. Задачи аппроксимации цветных изображений. Форма как оператор наилучшего приближения.
Рассмотрим вначале задачи приближения кусочно-постоянными (мозаичными) изображениями. Решение этих задач позволит построить форму изображения
в том случае, когда считается, что
для любого преобразования
, действующего на изображение
как на вектор
в каждой точке
и оставляющего
элементом
, т.е. изображением. Форма в широком смысле
определяется как оператор
наилучшего приближения изображения
изображениями
где
- класс преобразований
, такой, что
. Иначе можно считать, что
(10*)
а
- оператор наилучшего приближения элементами множества
, форма которых не сложнее, чем форма
. Характеристическим для
является тот факт, что, если
f
(x)=
f
(y),
то для любого
.
5.1. Приближение цветного изображения изображениями, цвет и яркость которых постоянны на подмножествах разбиения
поля зрения
X
.
Задано разбиение
, требуется определить яркость и цвет наилучшего приближения на каждом
.
Рассмотрим задачу наилучшего приближения в
цветного изображения
f
(×)
(2) изображениями (4), в которых считается заданным разбиение
поля зрения
X
и требуется определить
из условия
(11)
Теорема 1
.
Пусть
. Тогда решение задачи
(11)
имеет вид
,
i=1,...,N, j=1,...,n,
(12)
и искомое изображение
(4)
задается равенством
.
(13)
Оператор
является ортогональным проектором на линейное подпространство
(4****)
изображений
(4),
яркости и цвета которых не изменяются в пределах каждого A
i
, i=1,...,N.
Черно-белый вариант
(4*)
цветного изображения
(4)
является наилучшей в
аппроксимацией черно-белого варианта
цветного изображения
f
,
если цветное изображение
(4)
является наилучшей в
аппроксимацией цветного
изображения
f
.
Оператор
, является ортогональным проектором на линейное подпространство черно-белых изображений, яркость которых постоянна в пределах каждого
.
В точках множества
цвет
(4**)
наилучшей аппроксимации
(4)
цветного изображения
f
(2)
является
цветом аддитивной смеси составляющих
f
излучений, которые попадают на
.
Доказательство
.
Равенства (12) - условия минимума положительно определенной квадратичной формы (11),
П -
ортогональный проектор, поскольку в задаче (11) наилучшая аппроксимация - ортогональная проекция
f
на
. Второе утверждение следует из равенства
, вытекающего из (13). Последнее утверждение следует из равенств
,
i=1,...,N
вытекающих из (12) и равенства (1), в котором индекс
k
следует заменить на
xÎX
.
¦
Замечание 1.
Для любого измеримого разбиения
ортогональные проекторы
и
определяют соответственно форму в широком смысле цветного изображения
(4),
цвет и яркость которого, постоянные в пределах каждого
, различны для различных
, ибо
,
и форму в широком смысле черно-белого изображения, яркость которого постоянна на каждом
и различна для разных
,[2].
Если учесть, условие физичности (2*), то формой цветного изображения следует
считать проектор
на выпуклый замкнутый конус
(4***)
Аналогично формой черно-белого изображения следует считать проектор
на выпуклый замкнутый конус изображений (4*), таких, что
[2]. Дело в том, что оператор
определяет форму
изображения (4), а именно
- множество собственных функций оператора
. Поскольку
f(×) -
наилучшее приближение изображения
изображениями из
, для любого изображения
из
и только для таких
-
. Поэтому
проектор
можно отождествить с формой изображения
(4).
Аналогично для черно-белого изображения
a(×)
, [2]. И проектор
можно отождествить с формой изображения (4*), как это сделано в работах [2,3].
Примечания.
Формы в широком смысле не определяются связью задач наилучшего приближения элементами
и
, которая известна как транзитивность проецирования. Именно, если
оператор наилучшего в
приближения злементами выпуклого замкнутого (в
и в
) конуса
, то
. Иначе говоря, для определения наилучшего в
приближения
элементами
можно вначале найти ортогональную проекцию
изображения
на
, а затем
спроецировать в
на
. При этом конечномерный проектор
для каждого конкретного конуса
может быть реализован методом динамического программирования, а для многих задач морфологического анализа изображений достаточным оказывается использование лишь проектора
П
.
Форма в широком смысле
(4***) изображения (4) полностью определяется измеримым разложением
, последнее, в свою очередь определяется изображением
,
если векторы
попарно различны. Если при этом
, то форма в широком смысле
может быть определена и как оператор
П
ортогонального проецирования на
, определенный равенством (13).
Посмотрим, каким образом воспользоваться этими фактами при построении формы в широком смысле как оператора ортогонального проецирования на линейное подпространство
(10*) для произвольного изображения
. Пусть
- множество значений
и
- измеримое разбиение X , порожденное
, в котором
- подмножество X , в пределах которого изображение
имеет постоянные яркость и цвет, определяемые вектором
, если
.
Однако для найденного разбиения условие
, вообще говоря, невыполнимо и, следовательно, теорема 1 не позволяет построить ортогональный проектор
П
на
. Покажем, что
П
можно получить как предел последовательности конечномерных ортогональных проекторов. Заметим вначале, что любое изображение
можно представить в виде предела (в
) должным образом организованной последовательности мозаичных изображений
(*)
где
-
индикатор множества
, принадлежащего измеримому разбиению
В
(*)
можно, например, использовать так называемую исчерпывающую последовательность разбиений [], удовлетворяющую следующим условиям
-
-
C - измеримо,
;
-
N+1
-oe разбиение является продолжением
N-
го, т.е. для любого
,
найдется
i=i(j),
,
такое, что
;
- минимальная s-алгебра, содержащая все
,
совпадает с C.
Лемма (*).
Пусть
- исчерпывающая последователь-ность разбиений X и
- то множество из
, которое содержит
. Тогда для любой C-измеримой функции
и m-почти для всех
[ ]. n
Воспользуемся этим результатом для построения формы в широком смысле
П
произвольного изображения
. Пусть
- минимальная s-алгебра, относительно которой измеримо
, т.е. пусть
, где
- прообраз борелевского множества
,
B -
s-алгебра борелевских множеств
. Заменим в условиях, определяющих исчерпывающую последовательность разбиений, C на
и выберем эту, зависящую от
, исчерпывающую последовательность (
- измеримых) разбиений в лемме (*).
Теорема (*).
Пусть
,
-
исчерпывающая последовательность разбиений
X
, причем
-
минимальная s
-
алгебра, содержащая все
и П
(N)
- ортогональный проектор
,
определенный равенством
,
Тогда
1) для любого
-
измеримого изображения
и почти для всех
,
,
2)
для любого изображения
при
(в
), где П - ортогональный проектор на
.
Доказательство. Первое утверждение непосредственно следует из леммы (*) и определения
. Для доказательства второго утверждения заметим, что, так как
A
(N+1)
- продолжение разбиения
A
(N)
, N=1,2,...,
то последовательность проекторов
П
(N)
, N=1,2,...,
монотонно неубывает
:
и потому сходится (поточечно) к некоторому ортогональному проектору
П.
Так как
- множество всех
-измеримых изображений и их пределов (в
), а в силу леммы (*) для любого
-измеримого изображения
, то для любого изображения
и для любого
, ибо
-измеримо,
N
=1,2,... n
Вопрос о том, каким образом может быть построена исчерпывающая последовательность разбиений, обсуждается в следующем пункте.
Заданы векторы f
1
,...,f
q
, требуется определить разбиение
, на множествах которого наилучшее приближение принимает соответственно значенния f
1
,...,f
q.
Рассмотрим задачу приближения цветного изображения
f
,
в которой задано не разбиение
поля зрения
X
, а векторы
в
, и требуется построить измеримое разбиение
поля зрения, такое, что цветное изображение
- наилучшая в
аппроксимация
f
.
Так как
,
(14*)
то в
A
i
следует отнести лишь те точки
, для которых
,
=1,2,...
,q
, или, что то же самое,
=1,2,...,
q
. Те точки, которые согласно этому принципу могут быть отнесены к нескольким множествам, должны быть отнесены к одному из них по произволу. Учитывая это, условимся считать, что запись
,
(14)
означает, что множества (14) не пересекаются и
.
Чтобы сформулировать этот результат в терминах морфологического анализа, рассмотрим разбиение
, в котором
(15)
и звездочка указывает на договоренность, принятую в (14). Определим оператор
F
,
действующий из
в
по формуле
,
,
i
=1,...,
q
. Очевидно,
F
всегда можно согласовать с (14) так, чтобы включения
и
, i=1,...,q, можно было считать эквивалентными.
Теорема 2.
Пусть
- заданные векторы
R
n
.
Решение задачи
наилучшего в
приближения изображения
f
изображениями
имеет вид
,
где
-
индикаторная функция множества
. Множество
определено равенством (15). Нелинейный оператор
, как всякий оператор наилучшего приближения удовлетворяет условию
F
2
=F,
т.е. является пректором.
Замечание 2.
Если данные задачи доступны лишь в черно-белом варианте, то есть заданы числа
,
i
=1,...,q, которые можно считать упорядоченными согласно условию
, то, как показано в [3], искомое разбиение
X
состоит из множеств
где
, и имеет мало общего с разбиением (14).
Замечание 3.
Выберем векторы
f
i
,
i=1,..,q
единичной длины:
,
i
=1,...,q. Тогда
.
(16)
Множества (16) являются конусами в R
n
, ограниченными гиперплоскостями, проходящими через начало координат. Отсюда следует, что соответствующее приближение
изображения
f
инвариантно относительно произвольного преобразования последнего, не изменяющего его цвет (например
), в частности, относительно образования теней на
f
.
Замечание 4.
Для любого заданного набора попарно различных векторов
оператор
F
, приведенный в теореме 2, определяет форму изображения, принимающего значения
соответственно на измеримых множествах
(любого)
разбиения X.
Всякое такое изображение является неподвижной (в
) точкой
F:
, если
, все они изоморфны между собой. Если некоторые множества из
- пустые, или нулевой меры, соответствующие изображения имеют более простую форму.
Иначе говоря, в данном случае формой изображения
является множество всех изображений, принимающих заданные значения
на множествах положительной меры
любого разбиения
X,
и их пределов в
.
Теоремы 1 и 2 позволяют записать необходимые и достаточные условия наилучшего приближения изображения
f
(×)
изображениями
, в котором
требуется определить как векторы
, так и множества
так, чтобы
.
Следствие 1.
Пусть
D
i
,
i=1,...,N, - подмножества
R
n
(15),
П -
ортогональный проектор
(13),
,
где
.
Тогда
необходимые и достаточные условия
суть следующие
:
,
где
,
.
Следующая рекуррентная процедура, полезная для уточнения приближений, получаемых в теоремах 1,2, в некоторых случаях позволяет решать названную задачу. Пусть
-
исходные векторы в задаче (14*),
- соответствующее оптимальное разбиение (14),
F
(1)
- оператор наилучшего приближения и
- невязка. Воспользовавшись теоремой 1, определим для найденного разбиения
оптимальные векторы
.
Согласно выражению (13)
, и соответствующий оператор наилучшего приближения
П
(1)
(13) обеспечит не менее точное приближение
f
(×)
, чем
F
(1)
:
. Выберем теперь в теореме 2
, определим соответствующее оптимальное разбиение
и построим оператор наилучшего приближения
F
(2)
. Тогда
. На следующем шаге по разбиению
строим
и оператор
П
(3)
и т.д.
В заключение этого пункта вернемся к вопросу о построении исчерпывающего
-измеримого разбиения X, отвечающего заданной функции
.
Выберем произвольно попарно различные векторы
из
f
(X) и построим по формуле (15) разбиение R
n
. Для каждого q=1,2,... образуем разбиение E
(N(q))
, множества
,
j=1,...,N(q)
, которого образованы всеми попарно различными пересечениями
множеств из
. Последовательность соответствующих разбиений X
,
i=1,...,N(q), q=1,2...
-измеримы и
является продолжением
5.2. Приближение изображениями, цвет которых постоянен на подмножествах разбиения
поля зрения
X
.
Задано разбиение
, требуется определить цвет и распределение яркостей наилучшего приближения на каждом A
i
,i=1,...,N.
Для практики, как уже было отмечено, большой интерес представляет класс изображений (5), цвет которых не изменяется в пределах некоторых подмножеств поля зрения, и задачи аппроксимации произвольных изображений изображениями такого класса.
Запишем изображение (5) в виде
(17)
где
.
Пусть
A
1
,...,A
N
-
заданное разбиение X
,
-
индикаторная функция
A
i
, i=1,...,N.
Рассмотрим задачу наилучшего в
приближения изображения
изображениями (17), не требуя, чтобы
(18)
Речь идет о задаче аппроксимации произвольного изображения
изображениями, у которых яркость может быть произвольной функцией из
, в то время, как цвет должен сохранять постоянное значение на каждом из заданных подмножеств
A
1
,...,A
N
поля зрения X
,
(см. Лемму 3).
Так как
то минимум
S
(19) по
достигается при
, (20)
и равен
(21)
Задача (18) тем самым сведена к задаче
. (22)
В связи с последней рассмотрим самосопряженный неотрицательно определенный оператор
. (23)
Максимум (неотрицательной) квадратичной формы
на сфере
в R
n
, как известно, (см.,например, [11]) достигается на собственном векторе
y
i
оператора
Ф
i
,
отвечающем максимальному собственному значению
>0,
,
и равен
, т.е.
. Следовательно, максимум в (22) равен
и достигается, например, при
Теорема 3.
Пусть A
1
,...,A
N
-заданное измеримое разбиение X, причем (A
i
)>0, i=1,...,N. Решением задачи (18) наилучшего приближения изображения
изображениями g
(×)
(17) является изображение
(24)
Операторы
,
i=1,...,N,
и
- нелинейные (зависящие от
f
(×)
) проекторы:
П
i
проецирует в R
n
векторы
на линейное подпространство
, натянутое на собственный вектор
оператора
Ф
i
(23), отвечающий наибольшему собственному значению
i
,
; (25)
П
проецирует в
изображение
на минимальное линейное подпространство
, содержащее все изображения
Невязка наилучшего приближения
(19*)
.
Доказательство. Равентство (24) и выражение для
П
i
следует из (17),(20) и решения задачи на собственные значения для оператора
Ф
i
(23). Поскольку
Ф
i
самосопряженный неотрицательно определенный оператор, то задача на собственные значения (23) разрешима, все собственные значения
Ф
i
неотрицательны и среди них
i
- наибольшее.
Для доказательства свойств операторов
П
i
,
i=1,...,N,
и
П
введем обозначения, указывающие на зависимость от
f
(×):
(26*)
Эти равенства, показывающие, что результат двукратного действия операторов
П
i
,
i=1,...,N,
и
П
(26) не отличается от результатата однократного их действия, позволят считать операторы (26) проекторами.
Пусть
f
i
- cсобственный вектор
Ф
i
, отвечающий максимальному собственному значению
i
. Чтобы определить
следует решить задачу на собственные значения для оператора
:
.
Поскольку rank
=1,
имеет единственное положительное собственное значение, которое, как нетрудно проверить, равно
i
, и ему соответствует единственный собственный вектор
f
i
. Поэтому
.
Отсюда, в свою очередь, следует равенство (26*) для
n
Лемма 4.
Для любого изображения
решение
(24)
задачи
(18)
наилучшего приближения единственно и является элементом
.
Доказательство. Достаточно доказать, что единственный (с точностью до положительного множителя) собственный вектор
f
i
оператора (23), отвечающий максимальному собственному значению
i
, можно выбрать так, чтобы
, поскольку в таком случае будут выполнены импликации:
,
составляющие содержание леммы. Действительно, если
то согласно (23)
, поскольку включение
означает, что
; отсюда и из (25) получим, что
,
i=1,...,N,
а поэтому и в (24)
.
Убедимся в неотрицательности
. В ортонормированном базисе
e
1
,...,e
n
,
в котором
, выходной сигнал
i-
го детектора в точке
(см. замечание 1) задача на собственные значения (23*) имеет вид
,
p=1,...,n,
где
,
.
Так как матрица
симметрическая и неотрицательно определенная (
) она имеет
n
неотрицательных собственных значений
, которым соответствуют
n
ортонормированных собственных векторов
, а поскольку матричные элементы
, то согласно теореме Фробенуса-Перрона максимальное собственное значение
- алгебраически простое (некратное), а соответствующий собственный вектор можно выбирать неотрицательным:
. Следовательно, вектор
f
i
определен с точностью до положительного множителя
,
. n
Замечание 4.
Если
, т.е. если аппроксимируемое изображение на множествах того же разбиения
имеет постоянный цвет, то в теореме 3
,
.
Наоборот, если
, то
, т.е.
определяется выражением (17), в котором
.
Итак, пусть в изображении
g
(×) (17) все векторы
f
1
,.…..,
f
N
попарно не коллинеарны, тюею цвета всех подмножеств
A
1
,...,A
N
попарно различны. Тогда форма в широком смысле
изображения (17) есть множество решений уравнения
,
, (27)
где
,
f
i
- собственный вектор оператора
Ф
i
:
, отвечающий максимальному собственному значению
i
,
i=1,...,N
. В данном случае
, если и только если выполнено равенство (27).
Оператор
П
(24), дающий решение задачи наилучшего приближения
, естественно отождествить с формой в широком смысле изображения
(17).
Заданы векторы цвета j
1
,..., j
q
, требуется определить разбиение A
1
,..., A
q
, на множествах которого наилучшее приближение имеет соответственно цвета j
1
,..., j
q
и оптимальные распределения яркостей
.
Речь идет о следующей задаче наилучшего в
приближения изображения
. (28)
Рассмотрим вначале задачу (28) не требуя, чтобы
. Так как для любого измеримого
, (29)
и достигается на
, (30)
то, как нетрудно убедиться,
, (31)
где звездочка * означает то же самое, что и в равенстве (14): точки
xÎ
X, в которых выполняется равенство
могут быть произвольно отнесены к одному из множеств
A
i
или
A
j
.
Пусть
- разбиение
, в котором
(32)
а
F
: R
n-
>
R
n
оператор, определенный условием
(33)
Тогда решение задачи (28) можно представить в виде
, (34)
где
- индикаторная функция множества
A
i
(31),
i=1,...,q
и
F
-оператор, действующий в
по формуле (34) (см. сноску 4 на стр. 13).
Нетрудно убедиться, что задача на минимум (29) с условием физичности
(35)
имеет решение
(36)
Соответственно решение задачи (28) с условием физичности имеет вид
, (37)
где
- индикаторная функция множества
, (38)
В ряде случаев для построения (34) полезно определить оператор
F
+
: R
n-
>
R
n
, действующий согласно формуле
(39)
где
, так что
,
i=1,...q.
(40)
Подытожим сказанное.
Теорема 4.
Решение задачи
(28)
наилучшего в
приближения изображения
изображениями на искомых множествах
A
1
,...,A
q
разбиения X заданные цветами
j
1
,..., j
q
соответственно, дается равенством (34), искомое разбиение A
1
,...,A
q
определено в
(31).
Требование физичности наилучшего приближения приводит к решению
(37)
и определяет искомое разбиение формулами
(38).
Решение
(34)
инвариантно относительно любого, а
(37)
- относительно любого, сохраняющего физичность, преобразования, неизменяющего его цвет.
Формой в широком смысле изображения, имеющего заданный набор цветов
j
1
,..., j
q
на некоторых множествах положительной меры A
1
,...,A
q
разбиение поля
зрения можно назвать оператор
(34),
формой такого изображения является оператор
F
+
(37).
Всякое такое изображение
g
(×)
, удовлетворяющее условиям физичности (неотрицательности яркостей), удовлетворяет уравнению
F
+
g
(×)
=
g
(×)
, те из них, у которых m
(
A
i
)>
0, i=1,...,q, изоморфны, остальные имеют более простую форму. n
В заключение этого раздела вернемся к понятию формы изображения, заданного с точностью до произвольного, удовлетворяющего условиям физичности, преобразования яркости. Речь идет о форме изображения
, заданного распределением цвета
, при произвольном (физичном) распределении яркости, например,
. Для определения формы
рассмотрим задачу наилучшего в
приближения изображения
такими изображениями
, (41)
Теорема 5.
Решение
задачи
(41)
дается равенством
, (42)
в котором
,
где
.
Невязка приближения
, (43)
(
!) n
Определение.
Формой изображения, заданного распределением цвета
, назовем выпуклый, замкнутый конус изображений
или - проектор
на
.
Всякое изображение
g
(×), распределение цвета которого есть j(×) и только такое изображение содержится в
и является неподвижной точкой оператора
:
g
(×) =
g
(×). (#)
Поскольку на самом деле детали сцены, передаваемые распределением цвета j(×), не представлены на изображении
f
(×) =
f
(×)j(×) в той области поля зрения, в которой яркость
f
(
x
)=
0, xÎ
X, будем считать, что
- форма любого изображения
f
(
x
) =
f
(
x
)j(
x
),
f
(
x
)>
0, xÎ
X(
modm
), все такие изображения изоморфны, а форма всякого изображения
g
(×), удовлетворяющего уравнению (#), не сложнее, чем форма
f
(×).
Замечание 5. Пусть j
1
,..., j
N
- исходный набор цветов,
,
A
1
,...,A
N
- соответствующее оптимальное разбиение X, найденное в теореие 4 и
, (34*)
- наилучшее приближение
f
(×). Тогда в равенстве (24)
, (24*)
если
A
1
,...,A
N
- исходное разбиение X в теореме 3. Наоборот, если
A
1
,...,A
N
- заданное в теореме 3 разбиение X и
f
1
,...,
f
N
- собственные векторы операторов
Ф
1
,...,Ф
N
(23) соответственно, отвечающие максимальным собственным значениям, то
f
1
,...,
f
N
и будет выполнено равенство (24), если в (34*) определить j
i
как цвет
f
i
в (24),
i=1,...,N
.
Проверка этого замечания не представляет затруднений.
В. Случай, когда допускаются небольшие изменения цвета в пределах каждого
A
i
, i=1,...,N
.
Разумеется, условие постоянства цвета на множествах
A
i
, i=1,...,N
, на практике может выполняться лишь с определенной точностью. Последнюю можно повысить как путем перехода к более мелкому разбиению
, так и допустив некоторые изменения цвета в пределах каждого
A
i
, i=1,...,N
, например, выбрав вместо (17) класс изображений
(17*)
в котором
в (3).
Поскольку в задаче наилучшего приближения
f
(×)
изображениями этого класса предстоит найти
, векторы
при любом
i=
1
,...,N
, можно считать ортогональными, определив
, (*)
из условия минимума невязки по
. После этого для каждого
i=1,...,N
векторы
должны быть определены из условия
(**)
при дополнительном условии ортогональности
. Решение этой задачи дается в следующей лемме
Лемма 5.
Пусть
ортогональные собственные векторы оператора
Ф
i
(23),
упорядоченные по убыванию собственных значений:
.
Тогда решение задачи (**) дается равенствами
.
Доказательство. Заметим, что, поскольку
Ф
i
- самосопряженный неотрицательно определенный оператор, его собственные значения неотрицательны, а его собственные векторы всегда можно выбрать так, чтобы они образовали ортогональный базис в R
n
. Пусть
P
i
- ортогонально проецирует в R
n
на линейную оболочку
собственных векторов
и
[
P
i
Ф
i
P
i
] - сужение оператора
P
i
Ф
i
P
i
на
. Тогда левая часть (*) равна следу оператора [
P
i
Ф
i
P
i
]
, где
-
j
-ое собственное значение оператора
(см., например, [10]). Пусть
. Тогда согласно теореме Пуанкаре, [10],
, откуда следует утверждаемое в лемме. ¦
Воспользовавшись выражениями (*) и леммой 5, найдем, что в рассматриваемом случае имеет место утверждение, аналогичное теореме 3.
Теорема 3*
.
Наилучшее приближение любого изображения
f
(×) изображениями
(17*)
имеет вид
,
Где
:
ортогональный проектор на линейную оболочку
,
собственных векторов задачи
.
Невязка наилучшего приближения равна
. n
Рассмотрим теперь задачу наилучшего приближения изображения
f
изображениями (17), в которых заданы и фиксированы векторы
, и надлежит определить измеримое разбиение
и функции
, как решение задачи
(30)
При любом разбиении
минимум в (30) по
достигается при
, определяемых равенством (20). В свою очередь, очевидно, что
(31)
где точки
, в которых выполняется равенство
могут быть произвольно включены в одно из множеств : либо в
, либо в
. Это соглашение отмечено звездочкой в (31).
Таким образом доказана
Теорема 6.
Пусть
заданные векторы
R
n
.
Решением задачи
(30)
является изображение
,
где ортогональный проектор
определен равенством
(25),
а
-
индикаторная функция множества
(31), i=1,...,N.
Невязка наилучшего
приближения
равна
. n
Замечание 5.
Так как при
,
то условия (31), определяющие разбиение
, можно записать в виде
, (32)
показывающем, что
множество
в (32)
инвариантно относительно любого преобразования изображения
,
не изменяющего его цвет
.
Теоремы 3 и 6 позволяют сформулировать необходимые и достаточные условия наилучшего приближения изображения
f
(×) изображениями (17), при котором должны быть найдены
и c
i
0
, i=1,...,N, такие, что
.
Теорема 7.
Для заданного изображения
f
(×) определим множества
равенствами
(32),
оператор
П
- равенством
(24),
-
равенствами
(25).
Тогда
,
определено равенством
(32),
в котором
-
собственный вектор оператора
Ф
i
(23),
отвечающий наибольшему собственному значению,
причем в
(23)
,
наконец,
будет дано равенством
(20),
в котором
,
где
-
собственный вектор оператора
,
отвечающий наибольшему собственному значению
;
наконец,
. n
Замечание 6.
Следующая итерационная процедура полезна при отыскании
: Для изображения
f
(×)
зададим
и по теореме 5 найдем
и
, затем по теореме 3, используя
найдем
и
. После этого вновь воспользуемся теоремой 3 и по
найдем
и
и т.д. Построенная таким образом последовательность изображений
очевидно обладает тем свойством, что числовая последовательность
,
k
=1,2,.….. монотонно не возрастает и, следовательно, сходится. К сожалению ничего определенного нельзя сказать о сходимости последовательности
.
Формы
(10) и
(9) удобно задавать операторами
П
f
и
П
*
f
соответственно.
Теорема 7.
Форма
в широком смысле изображения
определяется ортогональным проектором
П
*
f
:
,
при этом
и
.
Доказательство. Так как для
, то получаем первое утверждение. Для доказательства второго утверждения рассмотрим выпуклую задачу на минимум
, решение которой определяется условиями (см., например, [11])
. Отсюда следует, что
и тем самым доказано и второе утверждение n
Замечание.
Так как
, где
f
i
(x)
- выходной сигнал
i
-го детектора в точке
, причем
f
i
(x)³
0 ,i=1,...,
n
, и, следовательно цвет
реальных изображений непременно имеет неотрицательные
, то для реальных изображений
, условия
и
, эквивалентны. Если же для некоторого
, то условие
не влечет
. Заметим также, что для изображений
g
(×), удовлетворяющих условию
, всегда
.
Для спектрозональных изображений характерна ситуация, при которой
k
детекторов регистрируют рассеянную объектами солнечную радиацию в диапазоне видимого света, а остальные
n-k
регистрируют собственное тепловое излучение объектов ( в инфракрасном диапазоне). В таком случае любое изображение можно представить разложением
(40)
В котором
. Если ИК составляющей солнечного излучения можно пренебречь по сравнению с собственным излучением объектов, то представляет интерес задача приближения изображениями
f
(×) , в которых
f
1
(×) - любая неотрицательная функция из
, j
1
(×) - фиксированное векторное поле цвета,
f
2
(×) - термояркость, j
2
(×) - термоцвет в точке
. Форма
П
*f
видимой компоненты
f
(×) (40) определяется как оператор наилучшего приближения в задаче
, в данном случае
, причем
П
*f
действует фактически только на "видимую компоненту"
g
(×), обращая "невидимую, ИК, компоненту"
g
(×) в ноль.
Форма ИК компоненты
f
(×) может быть определена лишь тогда, когда известно множество возможных преобразований j
2
(×)
f
2
(×).
Некоторые применения.
Задачи идентификации сцен.
Рассмотрим вначале задачи идентификации сцен по их изображения, неискаженным геометрическими преобразованиями, поворотами, изменениями масштаба и т.д. Ограничимся задачами, в которых предъявляемые для анализа изображения получены при изменяющихся и неконтролируемых условиях освещения и неизвестных и, вообще говоря, различных оптических характеристиках сцены.
1).
Задачи идентификации при произвольно меняющейся интенсивности освещения
.
Можно ли считать
f
(×) и
g
(×) изображениями одной и той же сцены, возможно, отличающимя лишь распределениями яркости, например, наличием теней?
В простейшем случае для идентификации достаточно воспользоваться теоремой 5, а именно,
f
(×) и
g
(×) можно считать изображениями одной и той же сцены, если существует распределение цвета
, для которого
v
(j(×)) содержит
f
(×) и
g
(×). Если
, и
, то, очевидно, существует
, при котором
f
(
x
)Î
v
(j(×)), g(
x
)Î
v
(j(×)), а именно,
,
, если
,
, если
, и, наконец,
- произвольно, если
.
На практике удобнее использовать другой подход, позволяющий одновременно решать задачи совмещения изображений и выделения объектов. Можно ли, например, считать
g
(×) изображением сцены, представленной изображением
f
(×)? Ответ следует считать утвердительным, если
.
Здесь j(×) - распределение цвета на изображении
f
(×), символ ~
0
означает, что значение d(
g
(×)) можно объяснить наличием шума, каких-либо других погрешностей, или, наконец, - наличием или, наоборот, отсутствием объектов объясняющим несовпадение
g
(×) и
f
(×) с точностью до преобразования распределения яркостей. Такие объекты, изменившие распределение цвета
g
(×) по сравнению с распределением цвета
f
(×), представлены в
.
2).
Идентификация при произвольном изменении распределения интенсивности и пространственно однородном изменении спектрального состава освещения
.
Можно ли считать изображением сцены, представленной на изображении
f
(×), изображение, полученное при изменившихся условиях регистрации, например, перемещением или изменением теней и изменением спектрального состава освещения?
Пусть
П
- форма в широком смысле изображения
f
(×), определенная в теореме @,
П
*
-
форма
f
(×). Тогда ответ на поставленный вопрос можно считать утвердительным, если
. Если изменение
g
(×) обусловлено не только изменившимися условиями регистрации, но также появлением и (или) исчезновением некоторых объектов, то изменения, обусловленные этим последним обстоятельством будут представлены на
.
3).
Задачи совмещения изображений и поиска фрагмента.
Пусть
f
(×) - заданное изображение,
AÌ
X - подмножество поля зрения, c
A
(×) - его индикатор, c
A
(×)
f
(×) -назовем фрагментом изображения
f
(×) на подмножестве
A,
представляющем выделенный фрагмент сцены, изображенной на
f
(×). Пусть
g
(×) - изображение той же сцены, полученное при других условиях, в частности, например, сдвинутое, повернутое, т.е. геометрически искаженное по сравнению с
f
(×). Задача состоит в том, чтобы указать на
g
(×) фрагмент изображения, представляющий на
f
(×) фрагмент сцены и совместить его с c
A
(×)
f
(×).
Ограничимся случаем, когда упомянутые геометрические искажения можно моделировать группой преобразований R
2
->R
2
, преобразование изображения
назовем сдвигом
g
(×) на
h.
Здесь
Q
(
h
): R
n
->R
n
,
hÎ
H, - группа операторов. Векторный сдвиг на
h¢
Î
H даст
.
В задаче выделения и совмещения фрагмента рассмотрим фрагмент сдвинутого на
h
изображения
g
(×) в “окне”
A
:
(100)
причем, поскольку
где
то в (100)
- ограничение на сдвиг “окна”
А
, которое должно оставаться в пределах поля зрения X.
Если кроме цвета
g
(×) может отличаться от
f
(×), скажем, произвольным преобразованием распределения яркости при неизменном распределении цвета и
- форма фрагмента
f
(×), то задача выделения и совмещения фрагмента сводится к следующей задаче на минимум
.(101)
При этом считается, что фрагмент изображения
g
(×), соответствующий фрагменту c
A
(×)
f
(×), будет помещен в “окно”.
А
путем соответствующего сдвига
h=h
*
,
совпадает с
c
A
(×)
f
(×)
с точностью до некоторого преобразования распределения яркости на нем. Это означает, что
.
т.е. в (101) при
h=h
*
достигается минимум.
4).
В ряде случаев возникает следующая задача анализа спектрозональных изображений: выделить объекты которые “видны”, скажем, в первом канале и “не видны” в остальных.
Рассмотрим два изображения
и
. Определим форму в широком смысле
как множество всех линейных преобразований
:
(
A -
линейный оператор R
2
->R
2
, не зависящий от
xÎ
X). Для определения проектора на
рассмотрим задачу на минимум
. [*]
Пусть
,
, тогда задача на минимум [*] эквивалентна следующей:
tr A
*
AS - 2trAB
~
. Ее решение
(знаком
-
обозначено псевдообращение).
=
=
Рис.1.
f
e
- вектор выходных сигналов детекторов, отвечающий излучению e(×), j
e
- его цвет; j
1
,j
2
,j
3
, - векторы (цвета) базовых излучений, b
- белый цвет, конец вектора b
находится на пересечении биссектрис.
Литература.
[1] Пытьев Ю.П. Морфологические понятия в задачах анализа изображений, - Докл. АН СССР, 1975, т. 224, №6, сс. 1283-1286.
[2] Пытьев Ю.П. Морфологический анализ изображений, - Докл. АН СССР, 1983, т. 296, №5, сс. 1061-1064.
[3] Пытьев Ю.П. Задачи морфологического анализа изображений, - Математические методы исследования природных ресурсов земли из космоса, ред. Золотухин В.Г., Наука, Москва, 1984, сс. хххх-ххххх.
[4] Пытьев Ю.П., Чуличков А.И. ЭВМ анализирует форму изображения, - Знание,сер. Математика, Кибернентика, Москва, 1988, 47 стр.
[5] Yu.P.Pyt’ev. Morphological Image Analysis, Patt. Recogn. and Image Analysis, 1993, v.3, #1, pp.19-28.
[6] Антонюк В.А., Пытьев Ю.П. Спецпроцессоры реального времени для морфологического анализа реальных сцен. Обработка изображений и дистанционное исследования, -Новосибирск, 1981, сс. 87-89.
[7] Антонюк В.А., Пытьев Ю.П., Рау Э.И. Автоматизация визуального контроля изделий микроэлектроники,Радиотехника и электроника, 1985, т. ХХХ,№12, сс. 2456-2458.
[8] Ермолаев А.Г., Пытьев Ю.П. Априорные оценки полезного сигнала для морфологических решающих алглритмов, - Автоматизация, 1984, №5, сс. 118-120.
[9] Пытьев Ю.П, Задорожный С.С., Лукьянов А.Е. Об автоматизации сравнительного морфологического анализа электронномикроскопических изображений, - Изв. АН СССР, сер. физическая, 1977, т. 41, №11, сс. хххх-хххх.
[10] A.A. Stepanov, S.Yu. Zheltov, Yu.V. Visilter. Shape analysis using Pyt'ev morphological paradigm and its using in machine vision. Proc. SPIE - Th. Intern. Soc. For Optical Engineering Videometrics III, 1994, v. 2350, pp. 163-167.
[11] Пытьев Ю.П.. Математические методы интерпретации эксперимента, Высшая школа, 351 стр., 1989.
[12] Майзель С.О. Ратхер Е.С. Цветовые расчеты и измерения. М:Л:Госэнергоиздат 1941, (Труды всесоюзного электротехнического института, вып.56).
[13] P. Kronberg. Fernerkundung der Erde Ferdinand Enke. Verlag Stuthgart 1985.