Раздел: Точные науки Применение графиков в решении уравнений Основная часть: Применение графиков в решении уравнений. I)Графическое решение квадратного уравнения: Рассмотрим приведённое квадратное уравнение : x2+px+q=0; Перепишем его так:x 2 =-px-q.(1) Построим графики зависимостей:y=x 2 и y=-px-q. График первой зависимости нам известен, это есть парабола; вторая зависимость- линейная; её график есть прямая линия. Из уравнения (1) видно, что в том случае, когда х является его решением, рдинаты точек обоих графиков равны между собой. Значит, данному значению х соответствует одна и та же точка как на параболе, так и на прямой, то есть парабола и прямая пересекаются в точке с абциссой х. Отсюда следующий графический способ решения квадратного уравнения:чертим параболу у=х 2 , чертим(по точкам) прямую у=-рх-q. Если прямая и парабола пересекаются, то абциссы точек пересечения являются корнями квадратного уравнения. Этот способ удобен, если не требуется большой точности. Примеры: 1.Решить уравнение:4x 2 -12x+7=0 Представим его в виде x 2 =3x-7/4. Построим параболу y=x 2 и прямую y=3x-7/4. Рисунок 1. Для построения прямой можно взять, например, точки(0;-7/4) и (2;17/4).Парабола и прямая пересекаются в двух точках с абциссами x 1 =0.8 и x 2 =2.2 (см. рисунок 1). 2.Решить уравнение : x 2 -x+1=0. Запишем уравнение в виде: x 2 =x-1. Построив параболу у=х 2 и прямую у=х-1, увидим, что они не пересекаются(рисунок 2), значит уравнение не имеет корней. Рисунок 2. Проверим это. Вычислим дискриминант: D=(-1)2-4=-3<0, А поэтому уравнение не имеет корней. 3. Решить уравнение: x 2 -2x+1=0 Рисунок 3. Если аккуратно начертить параболу у=х 2 и прямую у=2х-1, то увидим, что они имеют одну общую точку(прямая касается параболы, см. рисунок 3), х=1, у=1;уравнение имеет один корень х=1(обязательно проверить это вычислением). II) Системы уравнений. Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя переменными весьма разнообразны. Например, графиком уравнения 2х+3у=15 является прямая, уравнения у=0.5х 2 –2 –парабола, уравнения х 2 +у 2 =4 – окружность, и т.д.. Степень целого уравнения с двумя переменными определяется так же, как и степень целого уравнения с одной переменной. Если левая часть уравнения с двумя переменными представляет собой многочлен стандартного вида, а правая число 0, то степень уравнения считают равной степени многочлена. Для того чтобы выяснить, какова степень какого-либо уравнения с двумя переменными, его заменяют равносильным уравнением, левая часть которого – многочлен стандартного вида, а правая- нуль. Рассмотрим графический способ решения. Пример1:решить систему ⌠ x 2 +y 2 =25 (1) ⌠y=-x 2 +2x+5 (2) Построим в одной системе координат графики уравнений(Рисунок4): Построим в одной системе координат графи) х 2 +у 2 =25 и у=-х 2 +2х+5 Координаты любой точки построенной окружности являются решением уравнения 1, а координаты любой точки параболы являются решением уравнения 2. Значит, координаты каждой из точек пересечения окружности и параболы удовлетворяют как первому уравнению системы, так и второму, т.е. являются решением рассматриваемой системы. Используя рисунок, находим приближённые значения координат точек пересечения графиков: А(-2,2; -4,5), В(0;5), С(2,2;4,5), D(4;-3).Следовательно, система уравнений имеет четыре решения: х1≈-2,2 , у1≈-4,5; х2≈0, у2≈5; х3≈2,2 , у3≈4,5; х4≈4, у4≈-3. Подставив найденные значения в уравнения системы, можно убедиться, что второе и четвёртое из этих решений являются точными, а первое и третье – приближёнными. III)Тригонометрические уравнения: Тригонометрические уравнения решают как аналитически, так и графически. Рассмотрим графический способ решения на примере. Рисунок5. Пример1:sinx+cosx=1. Построим графики функций y=sinx u y=1-cosx.(рисунок 5) Из графика видно, что уравнение имеет 2 решения: х=2πп,где пЄZ и х=π/2+2πk,где kЄZ(Обязательно проверить это вычислениями). Рисунок 6. Пример2:Решить уравнение:tg2x+tgx=0. Решать это уравнение будем по принципу решения предыдущего. Сначала построим графики(См. рисунок 6)функций: y=tg2x u y=-tgx. По графику видно что уравнение имеет 2 решения: х=πп, пЄZ u x=2πk/3, где kЄZ.(Проверить это вычислениями) Применение графиков в решении неравенств. 1)Неравенства с модулем. Пример1. Решить неравенство |x-1|+|x+1|<4. На интеграле(-1;-∞) по определению модуля имеем |х-1|=-х+1,|х+1|=-х-1, и, следовательно, на этом интеграле неравенство равносиьно линейному неравенству –2х<4,которое справедливо при х>-2. Таким образом, в множество решений входит интеграл(-2;-1).На отрезке [-1,1] исходное неравенство равносильно верному числовому неравенству 2<4.Поэтому все значения переменной, принадлежащие этому отрезку, входят в множество решний. На интеграле (1;+∞) опять получаем линейное неравенство 2х<4, справедливое при х<2. Поэтому интеграл (1;2) также входит в множество решений. Объединяя полученные результаты, делаем вывод: неравенству удовлетворяют все значения переменной из интеграла (-2;2) и только они. Однако тот же самый результат можно получить из наглядных и в то же время строгих геометрических соображений. На рисунке 7 построены графики функций: y=f(x)=|x-1|+|x+1| и y=4. Рисунок 7. На интеграле (-2;2) график функции y=f(x) расположен под графиком функции у=4, а это означает, что неравенство f(x)<4 справедливо. Ответ:(-2;2) II)Неравенства с параметрами. Решение неравенств с одним или несколькими параметрами представляет собой, как правило, задачу более сложную по сравнению с задачей, в которой параметры отсутствуют. Например, неравенство√а+х+√а-х>4, содержащее параметр а, естественно, требует, для своего решения гораздо больше усилий, чем неравенство √1+х + √1-х>1. Что значит решить первое из этих неравенств? Это, по существу, означает решить не одно неравенство, а целый класс, целое множество неравенств, которые получаются, если придавать параметру а конкретные числовые значения. Второе же из выписанных неравенств является частным случаем первого, так как получается из него при значении а=1. Таким образом, решить неравенство, содержащее параметры, это значит определить, при каких значениях параметров неравенство имеет решения и для всех таких значений параметров найти все решения. Пример1: Решить неравенство|х-а|+|х+а|<b, a<>0. Для решения данного неравенства с двумя параметрами a u b воспользуемся геометрическими соображениями. На рисунке 8 и 9 построены графики функций. Y=f(x)=|x-a|+|x+a| u y=b. Очевидно, что при b<=2|a| прямая y=b проходит не выше горизонтального отрезка кривой y=|x-a|+|x+a| и, следовательно, неравенство в этом случае не имеет решений (рисунок 8). Если же b>2|a|, то прямая y=b пересекает график функции y=f(x) в двух точках (-b/2;b) u (b/2;b)(рисунок 6) и неравенство в этом случае справедливо при –b/2<x<b/2,так как при этих значениях переменной кривая y=|x+a|+|x-a| расположена под прямой y=b. Ответ:Если b<=2|a| , то решений нет, Если b>2|a|, то x ˆ(-b/2;b/2). III) Тригонометрические неравенства: При решении неравенств с тригонометрическими функциями существенно используется периодичность этих функций и их монотонность на соответствующих промежутках. Простейшие тригонометрические неравенства. Функция sin x имеет положительный период 2π. Поэтому неравенства вида: sin x>a, sin x>=a, sin x<a, sin x<=a. Достаточно решить сначала на каком-либо отрезке лдины 2π. Множество всех решений получим, прибавив к каждому из найденных на этом отрезке решений числа вида 2πп, пЄZ. Пример 1: Решить неравенство sin x>-1/2.(рисунок 10) Сначала решим это неравенство на отрезке[-π/2;3π/2]. Πассмотрим его левую часть – отрезок [-π/2;3π/2].Ηдесь уравнение sin x=-1/2 имеет одно решение х=-π/6; ΰ функция sin x монотонно возрастает. Значит, если –π/2<=x<= -π/6, то sin x<=sin(-π/6)=-1/2, т.е. эти значения х решениями неравенства не являются. Если же –π/6<х<=π/2 то sin x>sin(-π/6) = –1/2. Все эти значения х не являются решениями неравенства. На оставшемся отрезке [π/2;3π/2] τункция sin x монотонно убывает и уравнение sin x = -1/2 имеет одно решение х=7π/6. Следовательно, если π/2<=x<7π/, то sin x>sin(7π/6)=-1/2, т.е. все эти значения х являются решениями неравенства. Для x Є[7π/6;3π/2] имеем sin x<= sin(7π/6)=-1/2, эти значения х решениями не являются . Таким образом, множество всех решений данного неравенства на отрезке [-π/2;3π/2] εсть интеграл (-π/6;7π/6). В силу периодичности функции sin x с периодом 2π значения х из любого интеграла вида: (-π/6+2πn;7π/6 +2πn),nZ, также являются решениями неравенства. Никакие другие значения х решениями этого неравенства не являются . Ответ: -π/6+2πn<x<7π/6+2πn, где nЄZ. Рисунок 10. |